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Chapter 1

Review of thermodynamics

This chapter is a review of the basic concepts of thermodynamics, in particular those that we
will use in the following chapters. Therefore it has by no means the intention to be a complete
review. For a really complete and rigorous exposition of thermodynamics see [2].

Thermodynamics is the theory that describes the thermodynamic properties of macroscopic systems
at equilibrium. It can be generally introduced in two ways, an empirical and an axiomatic one;
we will follow the latter.

By macroscopic systems we mean systems with many degrees of freedom (like the atoms or
molecules that constitute a gas or a fluid), but such that only a few of them are measurable and
relevant in order to describe the bulk1 behaviour of the system itself. These relevant degrees of
freedom are the thermodynamic properties of the system; for example, in the case of a liquid or
a gas, these variables can be the pressure P , the volume V or the temperature T , while in the
case of magnetic systems we can consider the magnetic field ~H , the magnetization ~M (which
is the total magnetic dipole moment) and the temperature T , or finally in electrostatic systems
the electrical field ~E, the electric polarization ~P and the temperature T .
If these thermodynamic variables do not change over time, we say that the system is in equilib-
rium2.

The aim of thermodynamics is to find relations between the thermodynamic variables of a sys-
tem in a given state of equilibrium, so that the value of any other variable of interest can be

1It is in fact impossible to describe the exact behaviour of the system, due to the terribly large number of degrees
of freedom (of the order of 1023 in the case of gases or fluids).

2This statement should rather be reformulated this way: “If these thermodynamic variables do not change sen-
sibly during the time we take to observe the system, we say that the system is in equilibrium”. In fact, the ther-
modynamic properties of a system can change if we observe it for shorter or longer periods of time. Consider this
example: if some boiling water is poured into a tea cup, after some seconds it will reach an unchanging state of
rest in which its thermodynamic properties (like volume and temperature) do not change sensibly within some
seconds, and thus we can say that during this observation time the cup of water is at equilibrium. However, if we
observe it for a longer period of time, the temperature will obviously decrease sensibly and so we cannot say that
the system is still in equilibrium; after an hour, say, the temperature of the water will be the same of that of the
room, and if the room temperature remains constant for several hours then also the temperature of the water will
do so, and therefore if the observation time is within this range of several hours the cup can again be considered in
equilibrium. However, if we observe the system for even longer periods, such as a couple of days, then the volume
of the water will decrease until it evaporates completely and so within this observation time the system cannot be
regarded as being in an equilibrium state. After a few days, then, the cup can be again considered in equilibrium,
but strictly speaking this is not a real equilibrium because the molecules of the cup can evaporate, even if it could
take years to measure a significant change in the system.

3
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obtained by the initial ones (and generally one tries to chose experimentally accessible vari-
ables). In other words, if we have a system in a known state of equilibrium (namely we know
all of its thermodynamic variables) and then change the configuration of the system (for exam-
ple changing its shape, or giving it a certain amount of energy), in general it will reach another
equilibrium state: the scope of thermodynamics is to determine the values of the thermody-
namic variables in this new equilibrium.
More in general we can say that the central problem of thermodynamics is to find the final state
of equilibrium of a system from a given initial equilibrium state of several thermodynamic sys-
tems that can interact.

1.1 Thermodynamics of equilibrium

1.1.1 State variables

We will call state variable (or function) any quantity which at equilibrium depends only on the
thermodynamic variables of a system, rather than on its history. In other words if X1, . . . , XN

are the thermodynamic variables of a given system, any state variable A will be a function
A(X1, . . . , XN ) of them.
State variables can be either extensive or intensive:

– by extensive we mean that it is proportional to the size of the system. In other words, if a
system is composed of N subsystems and Xα is the value of the thermodynamic variable
X relative to the α-th subsystem, then the value X of the variable relative to the whole
system is:

X =
N∑
α=1

Xα

Considering them as functions, a state variable A will be extensive if it is a homogeneous
function of degree one:

A(λX1, . . . , λXN ) = λA(X1, . . . , XN )

where λ is a positive real number.
Examples of extensive state variables are the internal energy3, the mass or the volume of
the system.

– by intensive we mean that it is independent of the size of the system, namely that the
value of the variable relative to a subsystem is equal to that of the whole system.
Intensive state variables are homogeneous functions of degree zero:

A(λX1, . . . , λXN ) = A(X1, . . . , XN )

Examples of intensive variables are the pressure and the temperature of a system.

The fundamental hypothesis of thermodynamics is that any thermodynamic system can be
characterized at equilibrium with a finite set of thermodynamic variables.

3Note that, strictly speaking, internal energy is not extensive, but it is so for large enough systems. In fact if we
put two systems 1 and 2 in contact, the internal energy of the total system UTOT will be the sum of the energies U1

and U2 of the two initial systems and the energy Us.i. due to the surface interaction between the two, assuming that
the components of the two systems interact via a short-range potential. However, the internal energies of the two
systems are proportional to their volumes, while the interaction energy is proportional to their interaction surface;
since the surface grows much slower than the volume with respect to the size (unless the systems have very exotic
and strange shapes, a case which of course we ignore), for large systems this interaction energy can be serenely
ignored.
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Finally, we also know that thermodynamic theory is based upon four laws (or postulates).
For example, it is well known that the first law of thermodynamics is a restatement of the
conservation of energy, namely a change of the internal energy dU of a system can only occur
if there is an exchange of heat δQ and/or work δW , such that:

dU = δQ− δW

with the convention that δQ > 0 if the heat is absorbed by the system and δW > 0 if the work
is done by the system; the difference in notation is due to the known fact that dU is an exact
differential, while δQ and δW aren’t.

1.1.2 Entropy

We now introduce the following postulate, that will allow us to solve the general problem of
thermodynamics:

Given a thermodynamic system there exists a state function S called entropy, depending
on the variables (U,X1, . . . , XN ) and which is extensive, convex, monotonically increasing
with respect to the internal energy U and such that the equilibrium states of the system are
its maxima, compatibly with the constraints put on the system itself.

The assumption that S is a monotonically increasing function of the internal energy U implies
(Dini’s theorem) that it is locally invertible; namely we can write at least locally U as a function
of S and the other thermodynamic variables:

U = U(S,X1, . . . , XN )

From now on we will consider systems characterized by the internal energy U , the volume V
and the temperature T (also called PV T systems).
It can also be shown that S vanishes if and only if ∂U/∂S|V,N = 0, and since U = U(S, V,N) we
have:

dU =
∂U

∂S |V,N
dS +

∂U

∂V |S,N
dV +

∂U

∂N |S,V
dN

These derivatives of U are intensive quantities4, defined as:

T =
∂U

∂S |V,N
P = −∂U

∂V |S,N
µ =

∂U

∂N |S,V

where T is the temperature of the system, P its pressure and µ its chemical potential (note that
from what we have previously stated, S = 0 if and only if T = 0).
We thus have:

dU = TdS − PdV + µdN

and the equations:

T = T (S, V,N) P = P (S, V,N) µ = µ(S, V,N)

are called state equations, which are the relations we were looking for that bound the thermody-
namic variables of a system.

Let us note that once the entropy S(U, V,N) of a system is known, all its thermodynamics can
be straightforwardly derived: it is in fact sufficient to invert S and express U as U = U(S, V,N)
and then take some derivatives in order to obtain all the state equations of the system.

4Since they are derivatives of a homogeneous function of degree one, they are homogeneous functions of degree
zero.



6 CHAPTER 1. REVIEW OF THERMODYNAMICS

Let us also briefly see that, for example, T is indeed the temperature of a system, namely that
if two systems with different temperatures are allowed to exchange internal energy they will
finally reach an equilibrium where both have the same temperature. Let us call 1 and 2 these
systems, which can be represented for example by two compartments of a box, each of volume
Vi, containing Ni particles of gas (not necessarily of the same kind), at temperature Ti and with
internal energy Ui (with i = 1, 2), separated by a wall that allows the exchange of heat (namely
internal energy), but not particles (it’s impermeable) or volume (it’s fixed).
Once the systems are in thermal contact, they will reach a new equilibrium, which will be a
maximum for the entropy, namely dS = 0 in the final state. However, since the whole sys-
tem is isolated the total internal energy U1 + U2 must remain constant in the process. Thus
(remembering that dV = dN = 0):{

dS = 0

U1 + U2 = 0
⇒

{
dS1 + dS2 = 1

T1
dU1 + 1

T2
dU2 = 0

dU1 = −dU2

⇒

⇒ dS =

(
1

T1
− 1

T2

)
dU1 = 0

and since dU1 is an arbitrary (non null) quantity, in the final state we have:

1

T1
− 1

T2
= 0 ⇒ T1 = T2

and so the two systems will have the same temperature.
It can also be shown that the flow of heat goes, as intuition suggests, from the hotter to the
colder system.

1.1.3 Thermodynamic potentials

Thermodynamic potentials are extremely useful tools, whose name derives from an analogy
with mechanical potential energy: as we will later see, in certain circumstances the work ob-
tainable from a macroscopic system is related to the change of an appropriately defined func-
tion, the thermodynamic potential. They are useful because they allow one to define quantities
which are experimentally more easy to control and to rewrite the fundamental thermodynamic
relations in terms of them.

Mathematically all the thermodynamic potentials are the result of a Legendre transformation
of the internal energy, namely they are a rewriting of the internal energy so that a variable has
been substituted with another.
For a PV T system U = U(S, V,N); more in general we can write:

U = U(S, {xi}, {Nj})

where xi are called generalized displacements and Nj is the number of the j-th type of particle,
and so we have:

dU = TdS +
∑
i

Xidxi +
∑
j

µjdNj

where Xi are called generalized forces.
The thermodynamic potentials that are generally used are:

– Helmholtz free energy. It is defined by:

F = U − TS
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Let’s see that it is indeed a function of T instead of S:

dF = dU − d(TS) = dU − SdT − TdS = TdS − PdV + µdN − SdT − TdS ⇒

⇒ dF = −SdT − PdV + µdN ⇒ F = F (T, V,N)

Let us note that from this we have:

S = −∂F
∂T |V,N

P = −∂F
∂V |T,N

µ =
∂F

∂N |T,V

We now show that F is in effect a thermodynamic potential.
For a general infinitesimal process we have:

dF = dU − d(TS) = δQ− δW − TdS − SdT

and thus:
δW = δQ− TdS − SdT − dF

For a reversible transformation δQ − TdS = 0, and if it is also isothermal then dT = 0;
thus, for a reversible isothermal process δW = −dF : the quantity −∆F is the amount
of work that can be obtained from a reversible isothermal process, and hence the name
“thermodynamic potential”.
However, if the process is isothermal but irreversible then δQ− TdS ≤ 0, so:

(δW )irr,isot = δQ− TdS − dF ≤ −dF

therefore in general −∆F is the maximum work that can be extracted from a system at
constant temperature.
We also see that if the process is spontaneous δW = 0 and so dF ≤ 0: a spontaneous
transformation can only decrease the Helmholtz free energy of a system, and thus we can
conclude that equilibrium states of a system at fixed T , {xi}, {Nj} are the global minima
of F .

– Gibbs free energy. It is defined by:

G = U − TS + PV = F + PV ⇒ G = G(T, P,N)

and as we have done for F it can be shown that G is the thermodynamic potential for
transformations at fixed temperature and pressure.
Note that in general, if a system can be characterised by a set {xi} of generalized displace-
ments (and {Xi} are the corresponding generalized forces) and is composed of different
types of particles, then:

G(T, {Xi}, {Nj}) =
∑
j

µjNj (1.1)

In order to show that, we must consider the Euler identity associated to the internal energy
U . As a reminder, f(x1, . . . , xN ) is a homogeneous function of degree ` if and only if we
have:

N∑
k=1

∂f

∂xk
xk = `f(x)

Taking f as the internal energy U(S, {xi}, {Nj}), since it is homogeneous of degree one
we have:

∂U

∂S |xi,N
S +

∑
i

∂U

∂xi |S,N
xi +

∑
j

∂U

∂Nj |S,xi
Nj = U



8 CHAPTER 1. REVIEW OF THERMODYNAMICS

Namely:
U = TS +

∑
i

Xixi +
∑
j

µjNj

Considering the general definition of the Gibbs free energy, we get precisely (1.1).

– Entalpy. It is defined as:

H = U + PV ⇒ H = H(S, P,N)

and it is the thermodynamic potential for isobaric transformations.

– Grand potential. It is defined as:

Φ = U − TS − µN = F − µN ⇒ Φ = Φ(T, V, µ)

and is useful for the description of open systems, namely systems that can exchange
particles with their surroundings.

1.1.4 Gibbs-Duhem and Maxwell relations

Gibbs-Duhem relation

We start from the differential of the Gibbs free energy:

dG =
∑
i

∂G

∂xi |T,N
dxi +

∂G

∂T |P,N
dT +

∑
i

∂G

∂Ni |P,T,Nj 6=i
dNi =

∑
i

Xidxi − SdT +
∑
j

µjdNj

(where we are considering a system composed of different types of particles and that can be
characterized with different generalized displacements). However, differentiating (1.1) we get:

dG =
∑
j

Njdµj +
∑
j

µjdNj

and equating with the previous expression of dG we obtain:

SdT −
∑
i

Xidxi +
∑
j

Njdµj = 0

which is called Gibbs-Duhem relation. We can see that as a consequence of this relation the
intensive variables of the system are not all independent from each other: in particular, an r-
component PV T system will have r − 1 independent intensive thermodynamic variables; for
a simple PV T system the Gibbs-Duhem relation reduces to:

SdT − V dP +Ndµ = 0

Maxwell relations

We have previously seen that for a PV T system we have:

T =
∂U

∂S |V,N
− P =

∂U

∂V |S,N

we also know (Schwartz’s theorem) that (since U is a sufficiently regular function) we must
have:

∂2U

∂V ∂S
=

∂2U

∂S∂V
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which means:
∂T

∂V |S,N
= −∂P

∂S |V,N

or similarly, deriving U with respect to S and N , or V and N :

∂T

∂N |S,V
=
∂µ

∂S |N,V
− ∂P

∂N |S,V
=
∂µ

∂V |S,N

These are called Maxwell relations.
If we consider F instead of U , we get:

∂S

∂V |T,N
=
∂P

∂T |V,N

∂S

∂N |V,T
=
∂µ

∂P |T,N

∂S

∂N |P,T
= − ∂µ

∂T |P,N

or, with G:

∂S

∂P |T,N
= −∂V

∂T |P,N

∂S

∂N |P,T
= − ∂µ

∂T |P,N

∂V

∂N |P,T
=
∂µ

∂P |T,N

other similar relations can be found using other thermodynamic potentials or also for magnetic
systems.
The usefulness of these relations will become clear in the next section.

1.1.5 Response functions

Response functions are quantities that express how a system reacts when some external parame-
ters are changed.
Some important response functions for a PV T system are:

– The isobaric thermal expansion coefficient:

αP =
1

V

∂V

∂T |P,N

– The isothermal and adiabatic compressibilities:

KT = − 1

V

∂V

∂P |T,N
= − 1

V

∂2G

∂P 2 |T,N

KS = − 1

V

∂V

∂P |S,N
= − 1

V

∂2H

∂P 2 |S,N

(the minus sign is needed to make them positive)

– The specific heats at constant volume and pressure:

CV =
δQ

∂T |V,N
= T

∂S

∂T |V,N
= −T ∂

2F

∂T 2 |V,N

CP =
δQ

∂T |P,N
= T

∂S

∂T |P,N
= −T ∂

2G

∂T 2 |P,N

– For a magnetic system, a very important response function is the isothermal magnetic
susceptibility:

χT =
∂M

∂H |T
= − ∂

2G

∂H2 |T

where of courseH is the external field. To be more precise, this should be a tensor instead
of a scalar:

χT αβ =
∂Mα

∂Hβ |T



10 CHAPTER 1. REVIEW OF THERMODYNAMICS

As we can see, response functions are related to the second derivatives of thermodynamic po-
tentials.

With the response functions and Maxwell relations we can express many quantities otherwise
hard to guess.
For example, suppose we want to know what

∂S

∂V |T,N

is. Using Maxwell relations, we have:

∂S

∂V |T,N
=
∂P

∂T |V,N

and using the fact that:
∂P

∂T |V,N

∂V

∂P |T,N

∂T

∂V |P,N
= −1 (1.2)

(which comes from mathematical analysis5), then:

∂P

∂T |V,N
= − 1

∂V
∂P |T,N

∂T
∂V |P,N

= −
∂V
∂T |P,N
∂V
∂P |T,N

=
αP
KT

Now, response functions must obey some simple yet important inequalities, which come from
the thermal or mechanical stability of the system.
For example, CP = δQ/∂T|P ≥ 0 and CV = δQ/∂T|V ≥ 0, since giving heat to a system will
increase its temperature6. Similarly KT , KS ≥ 0 since an increase in pressure always decreases
the volume.

With Maxwell’s relations we can also obtain some equations that will be useful in the future.
Let’s start considering a system with a fixed number of particles (namely dN = 0) and such
that S is explicitly expressed in terms of T and V . Then:

dS =
∂S

∂T |V
dT +

∂S

∂V |T
dV

Dividing by dT both sides keeping the pressure constant, and then multiplying by T :

T
∂S

∂T |P
− T ∂S

∂T |V
= T

∂S

∂V |T

∂V

∂T |P
⇒ CP − CV = T

∂S

∂V |T

∂V

∂T |P

5In fact, let us call x1, x2 and x3 three variables, and define:

x1 = f1(x2, x3) x2 = f2(x1, x3) x3 = f3(x1, x2)

Now, we have that x3 = f3(x1, f2(x1, x3)) and so deriving with respect to x3 and x1 we get:

1 =
∂f3

∂x2

∂f2

∂x3
⇒ ∂f3

∂x2
=

1
∂f2
∂x3

0 =
∂f3

∂x1
+
∂f3

∂x2

∂f2

∂x1
⇒ ∂f3

∂x1
= − ∂f3

∂x2

∂f2

∂x1

Therefore we have indeed:
∂f3

∂x1

∂f1

∂x2

∂f2

∂x3
= −1

This way we can find relations similar to equation (1.2), for example:

∂S

∂V |E,N

∂V

∂E |S,N

∂E

∂S |V,N
= −1

∂S

∂N |E,V

∂N

∂E |S,V

∂E

∂S |N,V
= −1

6There are a few cases where the opposite occurs, but are rather exotic. The most notable ones are black holes.
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Now, using the Maxwell relation ∂S/∂V|T = ∂P/∂T|V and (1.2), namely:

∂P

∂T |V
= −∂P

∂V |T

∂V

∂T |P

we get:

CP − CV = −T ∂P
∂V |T

(
∂V

∂T |P

)2

=
TV

KT
α2
P

Similarly, for magnetic systems we have:

CH − CM =
T

χT

(
∂M

∂T

)2

(1.3)

Since all these quantities are positive, we also see that:

CP ≥ CV CH ≥ CM

1.2 Thermodynamics of phase transitions

1.2.1 Phase transitions and phase diagrams

Experimentally, any element or compound can be found, depending on the thermodynamic
conditions in which it is, in different phases. When we say that a system is in a particular phase
we mean that its physical properties (like density or magnetization) are uniform.
We have also seen that the states of equilibrium for a thermodynamic system are minima of
appropriate thermodynamic potentials.
Let us consider for example a PV T system and its Gibbs free energy G(T, P ); the molar Gibbs
free energy will be:

g(T, P ) =
G(T, P )

N

and we can describe the thermodynamic properties of the system in (g, T, P ) space.
Let us suppose for example that the system can be found in two phases α and β (for example
liquid and solid), and call gα and gβ their respective molar Gibbs potentials; then for given
values of T and P the stable phase will be that with the lowest value of g: for example, if we
have gα(T, P ) < gβ(T, P ) then the system will be in phase α. Therefore there will be regions in
(T, P ) space were the most stable phase will be α and others in which it will be β.
A phase diagram is a representation of these regions in the appropriate parameter space (for the
PV T system we are considering, (T, P ) space).
If we now plot the values of g as a function of T and P in (g, T, P ) space for every phase of the
system, we can determine the regions where the two phases will be the stable ones, namely we
can determine the phase diagram of the system, as shown in figure 1.1.
The very interesting region of this space (and the one on which we will focus our attention in
this section) is the line where the surfaces of the two phases intersect: along this the two phases
coexist, and when the system crosses it we say that it undergoes a phase transition.

Obviously, what we have stated can be generalized to systems which exhibit an arbitrary num-
ber of phases7.

For a PV T system the phase diagram can be represented by a surface in PV T space described
by a state equation like f(P, V, T ) = 0 (with f a function depending on the particular system
considered).

7There are however constraints on how many phases can coexist at a given temperature and pressure, see 1.2.3.
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Figure 1.1: Stability of phases
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Figure 1.2: Projections of phase diagram for PV T systems



1.2. THERMODYNAMICS OF PHASE TRANSITIONS 13

T

H

Tc

magnetic

pos. magn.

neg. magn.

paramagnetic

(a) Phase diagram for a magnetic system in (T,H)
space

H
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T > Tc T < Tc

T = Tc

(b) Magnetization as a function of the external field

Figure 1.3: Magnetic systems seen in different parameter spaces

In this case it is more useful to consider the projection of this surface on (T, P ) and (V, P )
planes. Generally these projections look like those shown in figure 1.2a (there are however
notable exceptions, like water for example). In particular, PV T systems are generally charac-
terized by the existence of a triple point (see 1.2.3) and a critical point in the (T, P ) phase diagram
(in figure 1.2a these are determined, respectively, by the temperatures Tt and Tc).
The existence of a critical point has a very intriguing consequence: since the liquid-gas coex-
istence line ends in a point, this means that a liquid can continuously be transformed in a gas
(or viceversa), and in such a way that the coexistence of liquid and gaseous phases is never
encountered8.

Obviously, our considerations are valid also for different thermodynamic systems.
For example, if we consider a magnetic system and its (T,H) phase diagram (where H is the
external magnetic field9), then we find another critical point as shown in figure 1.3a.
In this case when T > Tc the system is paramagnetic, namely it has no spontaneous magne-
tization when H = 0; when T < Tc however, the system is magnetic and its magnetization
can be positive (the total magnetic dipole moment ~M points upwards) or negative (it points
downwards), and depends on the sign of H .
The same system in (H,M) space is represented in figure 1.3b for different values of the temper-
ature; in particular, we can see that when T < Tc the magnetizationM has a jump discontinuity
at H = 0.

1.2.2 Phase coexistence and general properties of phase transitions

In order to understand a little bit more about phase transitions and the coexistence of different
phases, let us consider a PV T system in the liquid-gaseous transition.
The projection of the phase diagram in (V, P ) space is shown in figure 1.2b, where we can also
see clearly the presence of a critical point.
Let us now focus on the region of liquid-gas coexistence; physically, what happens (and what
can also be understood from the figure) is that the system exhibits both a liquid and a gaseous

8It can be legitimately asked if such a point exists also for the solid-liquid transition. As far as we know this
doesn’t happen, and a reasonable explanation for this has been given by Landau: critical points can exist only be-
tween phases that differ quantitatively and not qualitatively. In the case of liquid and gas, in fact, the two phases
have the same internal symmetry (both are invariant under continuous spatial translations) and differ only for the
mean distance between the particles, while the solid and liquid phases have qualitatively different internal symme-
tries (solids are invariant only under discrete spatial translations).

9For simplicity, we are supposing that the real magnetic field ~H , which is a vector, is directed along an axis, for
example the vertical axis, so that we can consider only its magnitude H and thus treat it as a scalar.
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phase, and it is possible to change the volume of the system without changing its pressure at
fixed temperature. This means that the work we do on the system is used only to change the
proportion between the phases (breaking or forming molecular bonds, on a microscopic level).

Let us now consider a slightly more general situation: suppose we have an isolated single-
component thermodynamic system described by the internal energy U and extensive variables
xi (generalized displacements); if the system is subject to reversible processes then from the
expression of dU we get:

dS =
1

T
dU −

∑
i

Xi

T
dxi (1.4)

where Xi are the generalized forces relative to the generalized displacements xi.
Let us now suppose that two phases α and β coexist and that they can exchange U and x
(namely, they are systems in contact with each other). At equilibrium the total entropy S =
Sα + Sβ must be maximized, and since the whole system is in equilibrium we also have dUα +
dUβ = 0 and dxi,α + dxi,β = 0. Substituting in (1.4) we get:

dS =

(
1

Tα
− 1

Tβ

)
dUα −

∑
i

(
Xi,α

Tα
−
Xi,β

Tβ

)
dxi,α = 0

Therefore, since dUα and dxi,α are arbitrary positive quantities, we must have:

Tα = Tβ Xi,α = Xi,β

Considering our PV T system again, since the generalized displacements that are needed in
order to describe it are the volume V and the number of particles N , when two phases coexist
we have:

Tα = Tβ Pα = Pβ µα = µβ

Since, as we have shown in 1.1.3, the Gibbs free energy isG(T, P ) = µN (for a single-component
PV T system) then g(T, P ) = µ and so when two phases coexist we also have:

gα(T, P ) = gβ(T, P )

This equality must hold along the whole coexistence line in (T, P ) space and so if we know
a point in this space where the two phases coexist we can, at least locally, “reconstruct” the
coexistence line. In fact we have dgα = dgβ , namely:

dgα = −sαdT + vαdP = dgβ = −sβdT + vβdP ⇒ dP

dT |coex.
=
sα − sβ
vα − vβ

=
Lα,β

T (vα − vβ)
(1.5)

where s = S/N and v = V/N , and by definition Lα,β is the molar latent heat needed to bring
the system from phase β to phase α. This is known as Clausius-Clapeyron equation.

From the expression of dgα = dgβ we can also understand some very general properties of
phase transitions. In fact, from the first part of (1.5) at phase coexistence we have:

∂gβ
∂T |P

− ∂gα
∂T |P

= ∆s > 0
∂gβ
∂P |T

− ∂gα
∂P |T

= ∆v > 0

This means that when the system undergoes a phase transition its volume and its entropy have
a jump discontinuity; as we will later see in more detail, since in this transition the first deriva-
tives of a thermodynamic potential have a jump discontinuity, we call it a first order transition.
A similar behaviour can be encountered in magnetic systems, where the magnetization M has
a jump at H = 0 for temperatures lower that the critical one; in this case since M = −∂F/∂H
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we see that the first derivative of the free energy F with respect to H has a jump discontinuity.

Furthermore, if we consider our system at the critical point we see from figure 1.2b that the
isothermal compressibility:

KT = − 1

V

∂V

∂P |T

diverges when V = Vc.
Similarly, the magnetic susceptibility χT of a magnetic system at its critical temperature di-
verges when H = 0 and M = 0.
As we will see further on in 5.1.2, the divergence of response functions is a typical behaviour
of thermodynamic systems in the neighbourhood of critical points and has important conse-
quences.

1.2.3 Gibbs phase rule

Until now we have not considered any constraint on the number of phases that can coexist in a
system at given values of T and P . However such constraints exist and are given by the Gibbs
phase rule, which we now derive.

Let us consider a system composed of c different components and with ϕ coexisting phases
(which we will label with roman numbers I , II etc.); from what we have previously stated T
and P must be common to all phases, and all their chemical potentials must be equal. However,
in order to specify the composition of the system we need only c − 1 variables, namely the
ratios of the concentrations of the various components with respect to the concentration of a
previously chosen component. Therefore the chemical potentials will depend on T , P and c−1
relative concentrations (x1, . . . , xc−1), not necessarily common to all phases. We therefore have:

µ1
I(T, P, x

1
I , . . . , x

c−1
I ) = µ1

II(T, P, x
1
II , . . . , x

c−1
II ) = · · · = µ1

ϕ(T, P, x1
ϕ, . . . , x

c−1
ϕ )

...

µjI(T, P, x
1
I , . . . , x

c−1
I ) = µjII(T, P, x

1
II , . . . , x

c−1
II ) = · · · = µjϕ(T, P, x1

ϕ, . . . , x
c−1
ϕ )

...

µcI(T, P, x
1
I , . . . , x

c−1
I ) = µcII(T, P, x

1
II , . . . , x

c−1
II ) = · · · = µcϕ(T, P, x1

ϕ, . . . , x
c−1
ϕ )

We therefore have 2 + ϕ(c− 1) variables and c(ϕ− 1) equations; if we want a solution to exist
we must have at least as many variables as equations, namely 2 + ϕ(c − 1) ≥ c(ϕ − 1). This
means that:

ϕ ≤ c+ 2

which means that the maximum number of coexisting phases in a system composed of c dif-
ferent substances at fixed temperature and pressure is c + 2. In particular, we see that for a
single-component PV T system we can have at most three coexisting phases for a particular
choice of T and P : this is the triple point that we have already encountered.

Equivalently, we can say that in general the number of independent variables with which we
can choose to describe the system at the coexistence of phases is:

f = 2 + ϕ(c− 1)− c(ϕ− 1) = c+ 2− ϕ

called thermodynamic degrees of freedom.
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Figure 1.4: Projection of the phase diagram of a PV T system in (T, ρ)space

1.3 Order parameters

A very important feature of a thermodynamic system that, as we will see later on, is very im-
portant if we want to study its behaviour near a phase transition or a critical point is that of
order parameter. By order parameter we mean a characteristic quantity of the system which is
nonzero for T < Tc and that vanishes when T ≥ Tc. This quantity can be taken as a sort of
“measure” of the order of the system: in fact when the temperature of a system is lower than
its critical one the system will exhibit some kind of “order” that was not present at higher
temperatures (due to the strong thermal fluctuations), and accordingly the value of the order
parameter will keep track of that.

Let us see a couple of examples in order to make these statements more comprehensible.
Let us consider a fluid and the projection of its phase diagram in (T, ρ) space (which is of course
equivalent to (T, V ) space), which is represented in figure 1.4. As we can see the difference be-
tween the densities of the system in its liquid and gaseous phases ρl−ρg vanishes when T ≥ Tc
(because for those temperature there is actually no distinction between a liquid and a gas) and
grows as the temperature drops under the critical temperature. Thus, this difference of densi-
ties can be taken as the order parameter of the system (the “order” consisting in the less chaotic
motion that the particles have in the liquid phase).
Let us now consider, on the other hand, a magnetic system and the projection of its phase di-
agram in (M,T ) space when H = 0, as shown in figure 1.5 (where the symmetry of the curve
is due to the fact that, as we have seen at the end of 1.2.1, the magnetization of the system can
point upwards or downwards). In this case, we see that the magnetization M itself satisfies
the right requirements in order to be the order parameter of the system (and in this case the
“order” is quantified in the amount of spins that point in the same direction).

A very important feature of an order parameter, as we shall see when we will be discussing the
statistical mechanics of critical phenomena, is its nature: the properties of the system and its
behaviour near a critical point will depend strongly on the fact that the order parameter of the
system is either a scalar, a vector, a tensor etc.

Sometimes, order parameters can be distinguished in conserved ones (like in the case of a
fluid, where the average density of the system remains constant during the transition) and not
conserved ones (like the magnetization of a magnetic system).
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T
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Tc

Figure 1.5: Phase diagram for a magnetic system in (T,M) space for H = 0

1.4 Classification of phase transitions

As we have partially seen, not all phase transitions are similar since they can exhibit different
behaviours and characteristics.
There are in fact several ways that have been introduced in order to classify them:

– Thermodynamic classification: according to this classification, phase transitions can be
divided in two groups:

→ Those which generate latent heat

→ Those which don’t generate latent heat

– Ehrenfest classification: according to this classification, a phase transition is said to be an
n-th order transition if the n-th derivative of any of the thermodynamic potentials of the
system is discontinuous at the transition.
For example, according to Ehrenfest’s classification the solid-liquid or liquid-gaseous
transitions for a fluid are all first order transitions. On the other hand, an example of
a second order transition is the conductor-superconductor transition for a metal, since in
this case there is a jump in the specific heat (which is the second derivative of the free
energy, see 1.1.5).

However, Ehrenfest’s classification is ultimately incorrect since at the time it was formulated it
was still not known that in some transitions there are thermodynamic quantities that actually
diverge instead of exhibiting a simple discontinuity.

– Modern classification: it is essentially a generalization of Ehrenfest’s one; according to
this classification a phase transition is said to be:

→ first order if there is a jump discontinuity in one (or more) of the first derivatives of
an appropriate thermodynamic potential (which depends on the system considered)

→ higher order, continuous or critical if the first derivatives of the thermodynamic
potentials are continuous, but the second derivatives are discontinuous or diverge

1.5 Critical exponents and universality

We know that when a system is in the neighbourhood of a critical point its thermodynamic
quantities have peculiar behaviours (they change with the temperature, eventually diverging).
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We can however ask ourselves how this quantities depend on the temperature, and for this we
introduce the concept of critical exponents; as we will see their study will give rise to surprising
and fundamental observations, and we will also understand why they are so important in the
study of critical phenomena.

Since we are only interested in the proximity of the critical point we define the reduced tempera-
ture:

t =
T − Tc
Tc

so that when t = 0 the system is at its critical temperature.
If F (t) is a generic function of t, the critical exponent λ associated to this function is defined as:

λ := lim
t→0

ln |F (t)|
ln |t|

In other words, we can write:
F (t)

t≈0∼ |t|λ

Note, however, that we are unjustifiably supposing that the critical exponent λ is the same for
both the limits t→ 0+ and t→ 0−; to be explicit, more in general we should have written:

F (t)
t≈0∼ |t|λ(1 + atλ1)

where a is a generic constant.
At this level, we are assuming that the two limits give the same result only for the sake of
simplicity: however, in the framework of the scaling theory (see chapter 7) and of the Renor-
malization Group (see chapter 8) this can be rigorously proved, so we are a posteriori justified
to make this assumption.

Depending on the thermodynamic quantity that we are considering, the relative critical expo-
nent has a different name. For example, considering a fluid we know that its specific heat at
constant volume diverges at the critical point, and we call its relative critical exponent α so
that:

CV
t≈0∼ |t|−α

(where obviously α > 0, as will always be in all the other cases).
On the other hand, the critical exponent associated to the order parameter of the system is
called β, so again for a fluid we will have:

ρliq − ρgas ∼ (−t)β

(where the minus sign is due to the fact that the order parameter is non null only for T < Tc,
and for example looking at figure 1.4 we could guess β ≈ 1/2).

Of course all these considerations can be extended to other types of systems.
For completeness, in tables 1.1 and 1.2 we have written the most used and important critical
exponents for fluid and magnetic systems.
Note that we have also included two quantities, the correlation length and the correlation func-
tion10, which haven’t been previously introduced. We will encounter them later on (see 5.1.2),
and we have inserted them here only for the sake of completeness.

10This is a function of ~r, the distance between two points of the system; furthermore, d is the dimensionality of
the system itself.
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Thermodynamic quantity Critical exponent
Specific heat at constant volume CV ≈ |t|−α

Density difference (order parameter) ρliq − ρgas ≈ (−t)β
Isothermal compressibility KT ≈ |t|−γ

Pressure at critical isotherm (t = 0) P − Pc ≈ |ρliq − ρgas|δ sgn(ρliq − ρgas)

Correlation length ξ ≈ |t|−ν
Correlation function G(~r) ≈ 1/|~r|d−2+η

Table 1.1: Critical exponents for a fluid

Thermodynamic quantity Critical exponent
Zero-field specific heat CH ≈ |t|−α

Zero-field magnetization (order parameter) M ≈ (−t)β
Zero-field isothermal susceptibility χT ≈ |t|−γ

Field at critical isotherm (t = 0) H ≈ |M |δ sgnM

Correlation length ξ ≈ |t|−ν
Correlation function G(~r) ≈ 1/|~r|d−2+η

Table 1.2: Critical exponent for a magnetic system

Now that we have defined critical exponents, we must justify their importance in the study of
critical phenomena.
What makes them really interesting is that they appear to be universal: what we mean by this
is that their values are independent of the system chosen, and depend only on some very general
properties of the system; for example, if the components of the system interact via short-range
potentials, it turns out11 that critical exponents depend only on the dimensionality d of the sys-
tem and on the symmetry of the order parameter.
In other words, critical exponents are universal characteristics of thermodynamic systems, while
some other properties (like the value of the critical temperature) depend strongly on its micro-
scopic details.
As an example, let us consider the results of a famous experiment done in 1945 by Guggen-
heim. In this experiment several different chemical compounds have been taken, and their
liquid-gaseous phase coexistence curves have been measured; plotting the values of the re-
duced temperatures T/Tc and densities ρ/ρc of these coexistence curves for the different com-
pounds, it turns out that all the data lie on the same curve in the proximity of the critical point,
and surprisingly also far from it12; as an example of a similar case, see figure 1.6. This fact is
also known as law of corresponding states (we will encounter it again in 6.4).
All these systems can therefore be described with the same critical exponent, which fitting the
data results approximately equal to 1/3. Note that the systems studied in this experiment are
microscopically different from each other (there are monoatomic and diatomic gases, and even
CH4 which has a much more complex structure compared to them).
Now, the very interesting fact is that (compatibly with experimental errors) the same critical
exponents appear in completely different systems: the measure of the β critical exponent for the
magnetization of MnFe2 gives β = 0.335(5) as a result13, while the same exponent for the phase
separation in a mixture of CCl4 and C7F16 gives14 β = 0.33(2).

This property of thermodynamic systems is called universality, and systems with the same set

11From the study of several exactly solvable models, or also from numerical simulations.
12E. A. Guggenheim, The Principle of Corresponding States, Journal of Chemical Physics, 13, 253 (1945).
13Heller and Benedek, Physical Review Letters, 13, 253, 1962.
14Thompson and Rice, Journal of the American Chemical Society, 86, 3547, 1964.
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Figure 1.6: Law of corresponding states (source)

of critical exponents are said to belong to the same universality class (we will be able to actu-
ally explain this phenomenon only when we will be studying the Renormalization Group, see
chapter 8).
This fact justifies the use of very simple and minimal models, with the right general properties,
in order to describe the behaviour of thermodynamic systems in the neighbourhood of critical
points, regardless of their microscopic details.

1.5.1 Inequalities between critical exponents

Critical exponents are not all completely independent: as we shall now show, from relations
that we have previously found we can deduce some inequalities that involve critical expo-
nents. The two main such relations are the Rushbrooke and Griffiths inequalities. We will limit
ourselves to show explicitly only the derivation of the first one.

In 1.1.5 we have shown a relation, namely equation (1.3), for magnetic systems that involve the
specific heats at constant field and magnetization:

CH − CM =
T

χT

(
∂M

∂T

)2

We thus have (since CM is surely positive, because giving heat to a system at constant magne-
tization will always increase its temperature):

CH = CM +
T

χT

(
∂M

∂T

)2

≥ T

χT

(
∂M

∂T

)2

⇒ CH ≥
T

χT

(
∂M

∂T

)2

If we now suppose H = 0 and T slightly lower than the critical temperature Tc, from the
definitions of critical exponents we have:

CH ∼ |t|−α χt ∼ |t|−γ
∂M

∂T
∼ (−t)β−1

Thus substituting and remembering that T < Tc:

(Tc − T )−α ≥ A · T (Tc − T )γ−2(β−1) ⇒ (Tc − T )−α−γ+2−2β ≥ A · T

https://commons.wikimedia.org/wiki/File:Etatcorr.gif
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where A is a (positive) constant. Taking the limit T → T−c :

lim
T→T−c

(Tc − T )−α−γ+2−2β ≥ A · Tc

and this inequality can be satisfied only if the left hand side doesn’t tend to zero. This happens
if −α− γ + 2 + 2β ≤ 0, namely:

α+ 2β + γ ≥ 2

This is the Rushbrooke inequality.

The Griffiths inequality, on the other hand, is:

α+ β(1 + δ) ≥ 2

and can be obtained from the fact that the free energy is a convex function.

At this level they are both inequalities; however, when the first critical transitions were studied,
numerical simulations showed that the critical exponents satisfied them as exact equalities. We
will show much later on (see 7.1.1), that once assumed the static scaling hypothesis Rushbrooke
and Griffiths inequalities will become exact equalities.
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Chapter 2

Brownian motion

2.1 Random walks and diffusion

Random walks have been introduced historically in order to explain the completely random
motion exhibited by pollen grains in water (the so called Brownian motion). Einstein was the
first to show that this particular behaviour could be explained, in terms of random walks,
as the result of the impacts of the pollen grains with water molecules: since at the time the
discrete nature of matter was still not universally accepted, this was one of the first theoretical
predictions of the existence of atoms and molecules, which was later proofed experimentally.

2.1.1 General properties of random walks

We will now study the general properties of random walks.
Consider a point particle in the real axis starting form the origin and moving by steps si (which
can be thought to be done at times i∆t) independent from each other. Supposing that si = ±1
(namely the particle can make one step to the right or left each time) the position of the particle
after N steps (note that the number of steps done is proportional to the time passed) will be:

xN = s1 + s2 + · · ·+ sN

What we would like to understand is the following: if we make the same particle start from the
origin for N times and move freely, what is its average behaviour? Equivalently, if we make
N different independent particles start at the same time from the origin, how will the system
evolve and which will be its properties?
Since the particles at every step have the same probability to go right or left, namely p(si =
1) = p(si = −1) = 1/2, then:

〈si〉 =
1

2
· 1 +

1

2
· (−1) = 0 ⇒ 〈xN 〉 =

N∑
i=1

〈si〉 = 0

so the mean position is not really relevant. We can however compute the variance from this
mean position to understand how the particles are distributed:

σ2
N =

〈
x2
N

〉
− 〈xN 〉2 =

〈
x2
N

〉
=

〈(
N∑
i=1

si

)2〉
=

〈
N∑

i,j=1

sisj

〉
=

N∑
i,j=1

〈sisj〉

However, since the steps are independent we have 〈sisj〉 = 〈si〉 〈sj〉 if i 6= j. In other words:

〈sisj〉 =

{
〈si〉 〈sj〉 = 0 i 6= j〈
s2
i

〉
= 1 i = j

⇒ 〈sisj〉 = δij

25
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so that:

σ2
N =

N∑
i,j=1

〈sisj〉 =

N∑
i,j=1

δij = N

Therefore, after N steps the particles are distributed in a region of width σN =
√
N .

This allows us to highlight a great difference with the more familiar uniform linear motion: for
random walks the mean displacement does not grow linearly with time, but depends on its
square root.

If we now move to three dimensions, calling ~si the random steps the position of one particle
after N steps will be:

~rN =

N∑
i=1

~si

and supposing |~si| = ` ∀i, then:

〈~rN 〉 =

N∑
i=1

〈~si〉 = 0

since the ~si-s are uniformly distributed on a sphere.
We will also have

〈
~si

2
〉

= `2 and therefore this time:

〈~si · ~sj〉 =

{
〈~si〉 〈~sj〉 = 0 i 6= j〈
~si

2
〉

= `2 i = j
⇒ 〈~si · ~sj〉 = `2δij

so that the variance after N steps is:

σ2
N =

〈
~rN

2
〉

=

〈
N∑
i=1

~si ·
N∑
j=1

~sj

〉
=

N∑
i,j=1

〈~si · ~sj〉 = N`2

Therefore, this time the particles will be distributed in a region of linear dimension σN = `
√
N ;

as in the previous case, the variance increases with the square root of the number of steps
(namely, the square root of time).

2.1.2 The diffusion equation

Let us now return to the one-dimensional case. The question we would like to answer now is
the following: in the continuum limit, if we make many different independent particles start
from the origin at the same instant, supposing that they undergo a random walk where the
length of each step is regulated by a probability distribution χ(`), how many particles will
there be at time t in the interval [x, x+ dx]?
We will see that the answer to this question leads us to the diffusion equation.

Let us suppose that 〈`〉 = 0 and
〈
`2
〉

= a2, with a finite (which is rather reasonable1). The
position of the particle at time t+ ∆t given the one at time t will be:

x(t+ ∆t) = x(t) + `(t)

1The fact that 〈`〉 = 0 of course means that the random walk is unbiased. As we will later see in 2.1.3, we can also
consider cases where the random walk is actually biased by an external force.
Note also that, however, there can be cases where χ(`) does not have a finite variance, for example power law
distributions. In this case the resulting motion is called Lévy flight, and the main difference with a “normal” random
walk is that in a Lévy flight the particles sometimes make very long steps. Such systems have been also used to
model the movement of animal herds.
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If we call ρ(x, t) the particle density, then at time t+ ∆t (with ∆t a small time interval, and we
will later take the limit ∆t→ 0) we will have:

ρ(x, t+ ∆t) =

∫
ρ(x′, t)χ(x− x′)dx′

In fact, a particle starting from x′ at time t will be in x at time t+ ∆t with probability χ(x− x′),
and so integrating over all the possible initial positions of the particles (given by the particle
density at time t) we get exactly the new particle distribution. Defining the variable ` = x− x′:

ρ(x, t+ ∆t) =

∫
χ(`)ρ(x− `, t)d`

Let us now suppose that the step size ` is small compared to the scales on which ρ varies (which
is another reasonable assumption); this way we can expand ρ in a Taylor series2:

ρ(x− `, t) = ρ(x, t)− ` ∂
∂x
ρ(x, t) +

`2

2

∂2

∂x2
ρ(x, t)− `3

3!

∂3

∂x3
ρ(x, t) + · · ·

so that we can write:

ρ(x, t+ ∆t) =

∫
χ(`)

(
ρ− `∂ρ

∂x
+
`2

2

∂2ρ

∂x2
− `3

3!

∂3ρ

∂x3
+ · · ·

)
d` =

= ρ− ∂ρ

∂x
〈`〉+

∂2ρ

∂x2

〈
`2
〉

2
− ∂3ρ

∂x3

〈
`3
〉

3!
+ · · ·

If we now also expand ρ for small ∆t and suppose for simplicity that
〈
`3
〉

= ca3 with c a
constant3, then:

∆t
∂ρ

∂t
+

∆t2

2

∂2ρ

∂t2
=
a2

2

∂2ρ

∂x2
− ca

3

6

∂3ρ

∂x3
+ · · ·

and dividing by ∆t:
∂ρ

∂t
+

∆t

2

∂2ρ

∂t2
=

a2

2∆t

∂2ρ

∂x2
− ca3

6∆t

∂3ρ

∂x3
+ · · · (2.1)

We are now interested in the continuum limit, namely ∆t → 0 and a → 0; this means that in
general the limit of a2/(2∆t) is not well determined. In particular, we could have:

1. a2/∆t→ 0, in which case ∂ρ/∂t = 0: there is no evolution

2. a2/∆t→∞, in which case the evolution would be instantaneous

3. a2/∆t→ const.

The most interesting case is the last one: in fact, if we require a2/2∆t to be always (so also in
the limits a,∆t → 0) equal to a constant D, called diffusion constant, then in equation (2.1) the
terms proportional to ∂2ρ/∂t2 and ∂3ρ/∂x3 and all the other terms in the expansion vanish4.
Therefore, we find that ρ(x, t) must satisfy the so called diffusion equation5:

∂

∂t
ρ(x, t) = D

∂2

∂x2
ρ(x, t)

2We also keep the third order in the expansion, to make explicit that all the terms beyond the second order vanish
in the limits we will take.

3An example of probability distribution that satisfies this requirement is the Poisson distribution.
4In particular, the term proportional to ∂3ρ/∂x3 vanishes because:

ca3

6∆t
=
c

6
aD → 0

5Fun fact: the diffusion equation with an imaginary time is the Schrödinger equation for a free particle (of course
provided that ρ is interpreted as a wave function), with a diffusion constant equal to D = ~/2m.
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which in three dimensions can be rewritten as:

∂

∂t
ρ(~x, t) = D∇2ρ(~x, t) (2.2)

Diffusion and continuity equation

We have until now not considered a very important property of ρ: since it is a particle density,
it must satisfy a continuity equation. This is an equation that expresses the fact that particles
cannot “disappear” and “reappear” in different points of space, but must continuously flow
from point to point.
To make things clearer let us consider a region of volume V of our system: this will contain
a certain number of particles, which will change with time because some particles will go out
of V while others will enter into the volume from the outside, due to the continuous random
motion they are subjected to. Therefore, in terms of ρ(~r, t) the number of particles contained in
the volume at time t+ ∆t will be:∫

V
ρ(~r, t+ ∆t)d~r =

∫
V
ρ(~r, t)d~r + in− out

where by “in” and “out” we mean the number of particles that have entered or gone out of V .
If we call ~J the flow of particles6, and n̂ the unit vector orthogonal to the surface S enclosing V
pointing outward, we can rewrite this equation as:∫

V
ρ(~r, t+ ∆t)d~r =

∫
V
ρ(~r, t)d~r −

∫
S

~J · n̂∆tdS

(where the last term is the net outgoing flow of particles). Dividing by ∆t:∫
V

ρ(~r, t+ ∆t)− ρ(~r, t)

∆t
d~r = −

∫
S

~J · n̂dS

Taking the limit ∆t→ 0 and using Gauss theorem we get:∫
V

∂ρ

∂t
d~r = −

∫
V

~∇ · ~Jd~r

Since the volume V is arbitrary, the integrands must be always equal:

∂

∂t
ρ(~r, t) = −~∇ · ~J(~r, t)

This is the continuity equation associated to ρ, with flow ~J .

Now, how are continuity and diffusion equations related?
It is immediate to see that they are equivalent if:

~J(~r, t) = −D~∇ρ(~r, t) (2.3)

In fact, this way:
∂ρ

∂t
= −~∇ ·

(
−D~∇ρ

)
= D∇2ρ

6Remember that in general the flow of particles ~J is defined as a vector such that | ~J | is the number of particles
that pass through the surface orthogonal to ~J per unit time and unit surface. More in general, if n̂ is a unit vector
orthogonal to a surface, then ~J · n̂ is the number of particles passing through the surface along the direction of n̂ per
unit time and surface. If ~J · n̂ < 0, this means that the particles are passing through the surface along the direction
of −n̂.
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The physical meaning of equation (2.3) is that a set of particles subjected to a random walk will
move from areas of high to areas of low concentration. In other words, the diffusion of particles
tends to “flatten” concentration inhomogeneities7.

Random walks and central limit theorem

We now want to show a particular property of random walks, and so also of diffusive phenom-
ena: we want to see that they are coherent with the central limit theorem. In fact, this states
that if xN =

∑
i `i is a sum of independent random variables, then xN for large N is distributed

along a Gaussian: what we want to show is that this is indeed the case.
To be more precise, let us reconsider the one-dimensional discrete random walk with constant
step length a. Let us call x the position of the particle at the N -th step, n+ the number of
steps that it has done to the right and n− to the left; of course N = n+ + n−, and we also call
m = n+ − n−, so that m = x/a. What we want to do is to determine the probability P (m,N)
that the particle is at position m after N steps, and see how it behaves for large N .

Now, since the probabilities for a step to be done to the right or to the left are the same, and
equal to 1/2, the probability P (m,N) will be a binomial one8:

P (m,N) =

(
N
n+

)
1

2n+

1

2N−n+
=

(
N

N+m
2

)
1

2N
=

N !(
N+m

2

)
!
(
N−m

2

)
!

It is easier to handle this expression if we take its logarithm:

lnP (m,N) = lnN !− ln

(
N +m

2

)
!− ln

(
N −m

2

)
!

Using Stirling’s approximation (see appendix C):

lnN ! ∼ N lnN −N +
1

2
ln(2πN)

and supposing that m is small compared to N , we can use the logarithm expansion ln(1 + x) ∼
x− x2/2 + · · · ; in the end we get:

lnP (m,N) = −m
2

2N
+ ln

1√
2πN

Therefore, exponentiating we have that:

P (m,N) =
1√

2πN
e−

m2

2N N large

In other words, the probability of finding a particle in a given position for large times is dis-
tributed along a Gaussian, which is what we expected from the central limit theorem.
Note that the result we have just found is completely general: we have not solved the diffusion
equation in order to find it, so we can argue that the density of diffusing particles will be a
Gaussian for large enough times independently of the initial conditions. In other words no matter

7However, there are situations were diffusion (despite the presence of the negative sign in equation (2.3)) can
actually highlight and increase concentration inhomogeneities, spontaneously bringing a system from a homoge-
neous to an inhomogeneous configuration. These are called patterning phenomena.

8We can also justify this thinking that the choice of the direction of the step is regulated by the flips of a coin.
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what the initial shape of ρ was, for large enough times it will have become a Gaussian.

A final remark: the expression of P for large N is formally defined also for m > N . However,
this is clearly impossible: if the particle has done N steps on the right its final position can’t be
m > N . Should we care about this problem?
Not really much, in reality: it is in fact true that formally we should also have non-null prob-
abilities to find the particles for m > N , but in practice these are ridiculously small (we are
considering events beyond N sigmas from the mean of the Gaussian!), so they do not consti-
tute a real problem.

The solution of the diffusion equation

We now want to solve the diffusion equation. For the sake of simplicity, we will do that in one
dimension, and the first approach we will use is that of a Fourier decomposition.

We begin by noting that the operators ∂2/∂x2 and the translation operator Ta, defined as
(Taf)(x) = f(x+ a), commute; in fact:(

∂2

∂x2
Taf

)
(x) =

∂2

∂x2
f(x+ a)

(
Ta

∂2

∂x2
f

)
(x) =

∂2

∂x2
f(x+ a)

Therefore, since ∂2/∂x2 and Ta commute they have a common basis of eigenfunctions. Thus, if
we find the eigenfunctions of Ta:

Taϕ = λϕ ⇒ ϕ(x+ a) = λϕ(x) ⇒ ϕk(x) = eikx and λ = eika

we have also found the eigenfunctions of ∂2/∂x2:

∂2

∂x2
ϕk(x) = −k2e−ikx = −k2ϕk(x)

These are plain waves, and in order to make them orthonormal we redefine them as:

ϕk(x) =
1√
2π

eikx

so that we have indeed:∫ +∞

−∞
ϕk(x)ϕ∗k(y)dk =

1

2π

∫ +∞

−∞
eik(x−y)dk = δ(x− y)

Therefore, we can expand any given ρ in terms of plane waves:

ρ(x, t) =
1

2π

∫
ρk(t)e

ikxdk

where ρk(t) are the Fourier coefficients, given by:

ρk(t) =

∫
e−ikxρ(x, t)dx

This way we have:

∂

∂t
ρ(x, t) =

1

2π

∫
∂ρk
∂t

eikxdk D
∂2

∂x2
ρ(x, t) =

1

2π

∫ (
−Dk2

)
ρk(t)e

ikxdk
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and the validity of the diffusion equation implies that the integrands must be equal, i.e.:

∂

∂t
ρk(t) = −Dk2ρk(t) ⇒ ρk(t) = e−Dk

2(t−t0)ρk(t0)

Note that this means that the various Fourier modes of the initial conditions are “dampened“
as time passes, and the larger is k the the more dampened ρk(t) will be.
Therefore, substituting in ρ(x, t):

ρ(x, t) =
1

2π

∫
ρk(t)e

ikxdk =
1

2π

∫
ρk(t0)eikx−Dk

2(t−t0)dk

Everything we have stated so far is abslutely general; we now consider a very special case: let
us suppose t0 = 0 for simplicity and set ρ(x, 0) = δ(x), namely at the beginning all the particles
are located at the origin. We have:

ρk(0) =

∫
e−ikxδ(x)dx = 1 ⇒ ρ(x, t) =

1

2π

∫
e−Dk

2t+ikxdk (2.4)

This is a Fresnel integral, which can be computed with complex analysis using Cauchy’s theo-
rem; however, we use a “trick” to determine ρ without explicitly calculating it, based on the
fact that: ∫ +∞

−∞
e−z

2
dz =

√
π

Deriving ρ in equation (2.4) with respect to x, we have:

∂ρ

∂x
=

i

2π

∫ +∞

−∞
ke−Dk

2t︸ ︷︷ ︸
− 1

2Dt
∂
∂k
e−Dk2t

eikxdk = − i

4πDt

∫ +∞

−∞

(
∂

∂k
e−Dk

2t

)
eikxdk =

= − i

4πDt

e−Dk2t+ikx
∣∣∣+∞
−∞︸ ︷︷ ︸

0

−
∫ +∞

−∞
ixe−Dk

2t+ikxdk︸ ︷︷ ︸
ix2πρ(x,t)

 = − x

2Dt
ρ(x, t)

Therefore:
ρ(x, t) = const. · e−

x2

4Dt

and the constant can be determined from the normalization condition, which leads to:

ρ(x, t) =
1√

4πDt
e−

x2

4Dt

This is the solution of the diffusion equation for the initial condition ρ(x, 0) = δ(x). Let us see
its properties:

0. After t = 0, ρ is a Gaussian of height 1/
√

4πDt and width
√

2Dt : as time passes this
Gaussian lowers and widens

1. As t→ 0, ρ(x, t)→ δ(x) (comprehensibly)

2. The mean value 〈x〉t of x at time t is null:

〈x〉t =

∫
ρ(x, t)xdx = 0
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since the integrand is odd. Then calling α = 1/4Dt for simplicity, we have9:

σ2
t =

〈
x2
〉
t

=

∫
ρ(x, t)x2dx =

∫
x2e−αx

2√
π/α

dx = −
√
α

π

∂

∂α

∫
e−αx

2
dx =

= −
√
α

π

∂

∂α

√
π

α
= − ∂

∂α
ln

√
π

α
=

1

2α
= 2Dt

Therefore σt =
√

2Dt , a result we already knew from the general properties of random
walks.

If we use as initial condition ρ(x, 0) = δ(x− y), then by definition ρ(x, t) is the Green’s function
of the diffusion equation:

ρ(x, t) =
1√

4πDt
e−

(x−y)2

4Dt := G(x− y, t)

Green’s functions can be used to solve differential equations, like the diffusion one, with an
approach different from the Fourier decomposition.
In fact, if we can (at least formally) write ρ as a superposition in the following form:

ρ(x, 0) =

∫
ρ(y, 0)δ(x− y)dy

then the general solution of the diffusion equation is:

ρ(x, t) =

∫
G(x− y, t)ρ(y, 0)dy

Of course, both Fourier’s and Green’s methods are equivalent, but depending on the situation
and the initial conditions considered one can result more convenient than the other.

2.1.3 Fokker-Planck and Langevin’s equations

In studying the diffusion equation we have neglected the possible presence of any external
force. We could ask, however, what happens if we include them; as we will see here, we will
obtain the so called Fokker-Planck equation.
So, let’s go back to the beginning and start with the same assumptions we made in 2.1.2, with
the difference that this time we also include an external force F . Therefore if x(t) is the position
of the particle at time t, after a little time interval ∆t it will be:

x(t+ ∆t) = x(t) + `(t) + Fγ∆t (2.5)

where γ is the so called mobility of the particles.

Depending on the nature of the system, the expression of the mobility γ can vary. For example,
if our particles are diffusing through a dense fluid, the mobility will be essentially related to
the viscosity of the fluid itself; in fact, it is a known fact that the equation of motion of a body
in a fluid is (in one dimension):

mẍ = F − kηv

where v = ẋ is the velocity of the body, η the viscosity of the fluid and k a geometric factor (for
example, from Stokes’s law in the case of spherical bodies we have k = 6πr, with r the radius
of the sphere). In this case if F is constant the body will rapidly acquire a drift velocity:

ẍ = 0 ⇒ ẋ = v∞ =
F

kη
⇒ x(t+ ∆t) = x(t) +

F

kη
∆t

9This result can be obtained much more easily from the fact that ρ(x, t) is a Gaussian.
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so in the case of particles diffusing through a viscous fluid we have γ = 1/kη.
On the other hand, in the case of a dilute fluid, supposing again that F is constant (or equiv-
alently that the free mean path of the particles is much smaller than the scales over which F
varies) we will have:

x(t+ ∆t) = x(t) +
1

2
∆t2

F

m

where we are only considering the drift due to F (we have neglected the possible term v∆t,
where v is the velocity of the particle after a scattering, since it is isotropic and so it does not
contribute to the net displacement of the particles). Now, since D = a2/2∆t:

1

2
∆t2

F

m
=

1

2
∆t2

F

m

2∆tD

a2
=

F∆t

m(a/∆t)2
D := Fγ∆t

and remembering also that
〈
`2
〉

= a2, so that the mean displacement after a scattering is ∆x =√
〈`2〉 = a and therefore (a/∆t)2 =

〈
v2
〉

(the mean square velocity of the particles) we have:

γ =
D

m 〈v2〉
=

D

2Ekin

where of course Ekin is the kinetic energy of the particles.

Now that we also know what the mobility is, we can proceed to determine how the diffusion
equation changes with the presence of the external and static force F .
Consider an arbitrary function f(x); then:

〈f(x(t))〉 =

∫
ρ(x, t)f(x)dx

Therefore, computing 〈f(x(t+ ∆t))〉we get:

〈f(x(t+ ∆t))〉 = 〈f(x(t) + `+ Fγ∆t)〉 ⇒

⇒
∫
ρ(x, t+ ∆t)f(x)dx =

∫
ρ(x, t)f(x+ `+ γF∆t)χ(`)dxd`

where the presence of χ(`) and the integration over ` are due to the fact that at time t+ ∆t the
coordinate x will be equal to x + ` + γF∆t with probability χ(`) (just like we have seen in the
derivation of the diffusion equation in 2.1.2).
Since ∆t and ` are small, we can expand f in the right hand side:∫

ρ(x, t+ ∆t)f(x)dx =

=

∫
χ(`)ρ(x, t)

[
f(x) +

∂f

∂x
(γF∆t+ `) +

1

2

∂2f

∂x2
(γF∆t+ `)2 + · · ·

]
dxd` =

=

∫
ρ(x, t)

[
f(x) +

∂f

∂x
γF∆t+

∂f

∂x
〈`〉+

1

2

∂2f

∂x2
(γF∆t)2+

+
∂2f

∂x2
γF∆t 〈`〉+

1

2

∂2f

∂x2

〈
`2
〉

+ · · ·
]
dx

Neglecting all the higher order terms and remembering that 〈`〉 = 0 and
〈
`2
〉

= a2, we get:∫
ρ(x, t+ ∆t)f(x)dx =

∫
ρ(x, t)

(
f(x) + γF∆t

∂f

∂x
+
a2

2

∂2f

∂x2

)
dx
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Integrating by parts:∫
ρ(x, t+ ∆t)f(x)dx =

∫
f(x)

(
ρ− γ∆t

∂

∂x
(Fρ) +

a2

2

∂2ρ

∂x2

)
dx+ ρ(x, t)f(x)Fγ∆t|+∞−∞+

+
a2

2

(
ρ(x, t)

∂f

∂x
+
∂ρ

∂x
f(x)

)∣∣∣∣+∞
−∞

Assuming that ρ and ∂ρ/∂x vanish sufficiently fast at infinity, the last two terms are null so that
we are left with:∫

ρ(x, t+ ∆t)f(x)dx =

∫
f(x)

(
ρ− γ∆t

∂

∂x
(Fρ) +

a2

2

∂2ρ

∂x2

)
dx

Since f(x) is arbitrary, this equality holds if the remaining part of the integrands are equal;
therefore, dividing also by ∆t:

ρ(x, t+ ∆t)− ρ(x, t)

∆t
= −γ ∂

∂x
(ρF ) +

a2

2∆t

∂2ρ

∂x2

and taking the limits a→ 0 and ∆t→ 0 with a2/2∆t = D = const., we have:

∂

∂t
ρ(x, t) =

∂

∂x

(
−γρ(x, t)F +D

∂

∂x
ρ(x, t)

)
(2.6)

This is the so called Fokker-Planck equation, while (2.5) is the Langevin’s equation.

Let us note that this is still compatible with a continuity equation, but this time the flow of
particles is given (in three dimensions) by:

~J = γρ~F −D~∇ρ

where the first term is the flow due to the external force, while the second one is the usual
diffusive term due to the density inhomogeneities of the system.

Just to see the Fokker-Planck equation at work in a very simple case, let us determine its sta-
tionary solution ρ∗(x) when F is a uniform gravitational force, with x being the vertical coordi-
nate (which is the only significant one; we assume that the positive x direction is that pointing
downwards); since F = mg (with m the mass of the particles), then ∂ρ∗/∂t = 0 if10:

−ρ∗γmg +D
∂ρ∗

∂x
= 0 ⇒ ρ∗(x) = e

mγg
D

xρ∗(0) = e−
γ
D
U(x)ρ∗(0)

where U(x) = −mgx is the gravitational potential.

10Of course, we could have equivalently solved the equation from a direct application of (2.6), namely from
−γmg∂ρ∗/∂x+D∂2ρ∗/∂x2 = 0.



Chapter 3

Ensemble theory

3.1 A bridge between the microscopic and the macroscopic

The fundamental question from which statistical mechanics has risen is the following: where
does thermodynamics come from?
In fact, we know that fluids and gases are made of particles (atoms or molecules) and in prin-
ciple we could use the tools of classical mechanics in order to study their motion; therefore, we
could theoretically describe the system at least from a microscopic perspective. We can how-
ever wonder how this microscopic point of view is related to the macroscopic description of
systems given by thermodynamics. In other words: how do the thermodynamic laws we know
come from the microscopic motion of particles?
What we want to do now is exactly to establish this link, i.e. to derive the thermodynamics of
a macroscopic system at equilibrium from its microscopic properties. This is the final purpose
of equilibrium statistical mechanics.
We now therefore outline the general theoretical framework that will be needed in order to
develop this theory.

Let us consider an isolated system composed of N particles, with volume V and energy E.
Since it is isolated its energy, momentum ~P and angular momentum ~L are conserved; however,
considering the system as fixed and still we can set ~P = 0 and ~L = 0 so that the energy E is its
only non null conserved quantity. If we call ~qi and ~pi, respectively, the position and momentum
of the i-th particle the dynamics of the system can be obtained from its Hamiltonian:

H(~q1, . . . , ~qN , ~p1, . . . , ~pN ) =
N∑
i=1

|~pi|2

2mi
+ V(~q1, . . . , ~qN )

(where V is a generic interaction potential acting between the particles) through Hamilton’s
equations:

d~qi
dt

= ~∇~piH
d~pi
dt

= −~∇~qiH

However, solving these equations for a macroscopic system is impractical for two reasons:

1. The number of particles in the system is insanely huge, in general of the order of Avo-
gadro’s number, i.e. ∼ 1023. We therefore should solve a system of approximately 1023

coupled differential equations, which is rather impossible (also from a computational
point of view)

2. Even if we could solve them the solutions of Hamilton’s equations would give no sig-
nificant information about the system; for example it is much more interesting to know
the average number of particles that hit a wall of the system per unit time than knowing
exactly which particle hits the wall at a given instant

35
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Furthermore a lot of interesting systems exhibit chaotic behaviours, namely their time evo-
lution depends strongly on initial conditions making essentially useless any exact solution of
Hamilton’s equations.

Therefore, it is clear how a statistical treatment of many-particle systems is essential in order to
obtain relevant information and ultimately derive their thermodynamics.
The fundamental concept that allows one to develop such statistical description is that of en-
semble, which we now introduce.
Consider the generic many-particle system that we have introduced earlier, and for the sake of
simplicity call Q = (~q1, . . . , ~qN ) and P = (~p1, . . . , ~pN ) the set of all the coordinates and momenta
of the particles. The 3N -dimensional spaces where Q and P live are called, respectively, config-
uration and momentum space, while the 6N -dimensional space where (Q,P) lives is called phase
space of the system, often referred to as Γ.
Once all the positions and momenta of the particles have been given (i.e. once we have all the
possible information about its microscopic configuration) the whole system is identified with
a unique point (Q,P) in phase space, sometimes called microstate or representative point of the
system, and as the system evolves (i.e. the particles move, thus changing their positions, and
interact with each other, thus changing their momenta) this point moves in phase space de-
scribing a trajectory. The exact solution of Hamilton’s equations for this system would give us
the expression of this trajectory, but as we have seen before this is not a really useful informa-
tion.
We therefore change point of view: if we look at our system under a “macroscopic perspec-
tive”, in general it will be subjected to some constraints like the conservation of energy (in case
it is isolated) or the conservation of volume etc., and therefore the macroscopic properties of
a system have precise values. This suggests that we can define a macrostate of the system, i.e.
describe it only with some of its bulk properties (which is exactly the approach of thermody-
namics).
We thus have two substantially different ways to describe the same system: a macroscopic and
a microscopic one.
Now, for a given macrostate of the system there will be multiple microstates which are com-
patible with the first one, namely there are many microscopic configurations of the system that
satisfy the same macroscopic constraints (have the same energy, volume etc.) and obviously
they are all equivalent from a macroscopic point of view.
The set of all the possible microstates which are compatible with a given macrostate of the sys-
tem is called ensemble.

The approach of statistical mechanics consists, essentially, in studying the average behaviour of
the elements of an ensemble rather than the exact behaviour of a single particular system.

Depending on the constraints set on a system its ensemble changes name, and in particular
there are three kind of ensembles:

– microcanonical ensemble: when the system is completely isolated and has fixed values
of energy E, volume V and number of particles N

– canonical ensemble: when the system can exchange energy with its surroundings

– grand canonical ensemble: when the system can exchange energy and particles with its
surroundings

We will now proceed to study the properties of such ensembles and see how we can link them
with thermodynamics.
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3.2 The microcanonical ensemble

Now that we have laid out the general framework we needed we can proceed to study the
properties of the microcanonical ensemble; we therefore have a system with fixed values of energy
E, volume V and number of particles N .
We have just seen that the ensemble of such a system is constituted by a multitude of equivalent
microstates; since we have no additional information we can assume that all these microscopic
configurations are equally probable. In other words, we introduce statistics in our treatment
by formulating the so called a priori equal probability postulate:

If a system is in a given macroscopic configuration it can be found with equal probability in
any of the microstates of its ensemble.

Mathematically this means introducing a constant probability density ρ(Q,P) in the ensemble
of the system, namely:

ρ(Q,P) =
δ(H− E)

Ω(E, V,N)

where Ω(E, V,N) is the volume occupied by the ensemble in phase space (i.e. the volume of the
set of points corresponding to all the microstates of a given ensemble, which is a hypersurface
of constant energy E):

Ω(E, V,N) =

∫
H=E

dΓ =

∫
dΓδ(H− E)

where dΓ is a short notation for dQdP =
∏N
i=1 d~qid~pi. If we now divide both sides by Ω(E, V,N)

we see that ρ(Q,P) as we have defined it has indeed the meaning of a probability density1 :

1 =

∫
dΓ

δ(H− E)

Ω(E, V,N)
:=

∫
dΓρ(Q,P)

In particular the Dirac delta is needed to make ρ vanish everywhere but on the hypersurface of
energy E in phase space, and Ω in order to correctly normalize ρ.

Therefore since we have introduced a probability density in phase space, if in general we define
an observable O(Q,P) as a function of all the positions and momenta of the particles we can
define its mean value in the ensemble as:

〈O(Q,P)〉 =

∫
ρ(Q,P)O(Q,P)dΓ

1What we are seeing now could also have been derived in a different but equivalent way.
Let us suppose that the energy of the system instead of being exactly equal to E can belong to the interval
[E,E + ∆E] with ∆E � E. This means that in phase space the system will occupy the region enclosed by the
two hypersurfaces of energy E and E + ∆E; the volume of this region can be written as:

Ω(E, V,N)∆E =

∫
dΓ {Θ [H(Q,P)− E]−Θ [H(Q,P)− (E + ∆E)]}

where Θ is the Heaviside step function. Within the theory of distributions it can be shown that, formally, the derivative
of Θ is the Dirac δ function, i.e. dΘ(x)/dx = δ(x), so that:

Θ [H− E]−Θ [H− (E + ∆E)] = − d

dE
Θ(H− E)∆E = −∆E [−δ(H− E)] = ∆Eδ(H− E)

and thus:
Ω(E, V,N) =

∫
dΓδ(H− E)

On the other hand, we could have equivalently obtained the expression of ρ(Q,P) from the general definition of
the mean value of an observable O over this ensemble:

〈O(Q,P)〉 =
1

Ω(E, V,N)

∫
dΓ {Θ [H(Q,P)− E]−Θ [H(Q,P)− (E + ∆E)]}O(Q,P)

and proceeding in the same way.
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This is the value of O that we actually measure: since the microstate of the system is continu-
ously moving through the ensemble and since the time that macroscopic measurements require
is many orders of magnitude longer than the time intervals typical of microscopic dynamics,
we will only be able to measure ensemble averages2.
Now, the mean value of an observable is significant if its variance is small, otherwise the results
of a measure of the same quantity in the same conditions would fluctuate over a wide range
making the observable essentially meaningless; for example, since we know that a system in
equilibrium has a constant value of energy we expect that, in order to be a good theory, sta-
tistical mechanics can show that the statistical fluctuations of energy (at least for macroscopic
systems) are very small and thus negligible, but of course this consideration can be extended
to any observable (like the number of particles of a system)3. We will show that (fortunately!)
this is always the case.

We can however already get a taste of that in a very simple situation: consider a gas of 2N
particles in a cubic box of side L and let us mentally divide this box into two halves, the right
and the left one. We ask: what is the probability to find N −m particles in the right half and
N +m in the left one?
Since intuitively the probability to find a single particle in one half of the box is 1/2 we will
have:

P (m) =
1

2N+m

1

2N−m

(
2N

N +m

)
=

1

2N
(2N)!

(N +m)! · (N −m)!

where we have introduced the binomial factor because all the configurations which differ for
the exchange of particles are equivalent, since they are identical. The original question we
asked can now be rephrased as: how does P (m) change with m?
If we call p the probability to find a particle in the left half and q the probability to find it in the
right one (we will later set both equal to 1/2, but let’s distinguish them for now), we have:

P (m) = pN+mqN−m
(

2N
N +m

)
and then:

〈N +m〉 =
∑
m

(N +m)P (m) = p
∂

∂p

∑
m

P (m)︸ ︷︷ ︸
(p+q)2N

= p · 2N(p+ q)2N−1

Setting p = q = 1/2 we get:

〈N +m〉 = N ⇒ 〈m〉 = 0

which is rather reasonable. Therefore, we expect that the configuration where N particles are
in the right half and N in the left one is the most probable for our system. However, how much
more probable is this configuration with respect to the other ones?
In order to understand that let us also compute the standard deviation from the mean value
〈N +m〉. We have:

p2 ∂
2

∂p2

∑
m

P (m) =
∑
m

(N +m)(N +m− 1)P (m) =
〈
(N +m)2

〉
− 〈N +m〉 ⇒

2In other words, it is impossible to measure a macroscopic quantity relative to a single microstate of the system
since in the time the measurement takes the system will have acquired many other different microscopic configu-
rations and what we measure is the average (of course weighted with the probability density of the ensemble) over
all the microscopic configurations acquired. This also relates to what we will see in 3.2.5 and appendix D.

3Of course this is not possible in the microcanonical ensemble, since both E and N are fixed, and will become
possible in the other ensembles.
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⇒
〈
(N +m)2

〉
= p2 ∂

∂p

[
2N(p+ q)2N−1

]
+ p2N(p+ q)2N−1 =

= p22N(2N − 1)(p+ q)2N−2 + p2N(p+ q)2N−1

and setting p = q = 1/2: 〈
(N +m)2

〉
= N2 +

N

2

Therefore:

σ2
〈N+m〉 =

〈
(N +m)2

〉
− 〈N +m〉2 =

N

2
⇒ σ〈N+m〉 =

√
N

2

This means that the relative fluctuation is:
σ〈N+m〉

〈N +m〉
=

1√
2N

which turns out to be astonishingly small: in fact if N ∼ 1023 this relative fluctuation is of the
order of 10−11. We can therefore conclude that the fluctuations of the number of particles in the
two halves from their mean values are absolutely negligible (we never observe the gas sponta-
neously occupying only one half of the system!).

We can also obtain the same result in a slightly more complicated way, but which allows us to
extract some more interesting information on the system.
In order to do that let us consider the logarithm of P (m):

lnP (m) = −2N ln 2 + ln(2N)!− ln(N −m)!− ln(N +m)!

Using Stirling’s approximation (see appendix C) for large N we get:

lnP (m) ∼ −2N ln 2 + 2N ln(2N) + ln
√

2π · 2N − (N −m) ln(N −m)−

− ln
√

2π(N −m) − (N +m) ln(N +m)− ln
√

2π(N +m)

and with some algebraic reshuffling we obtain:

lnP (m) ∼ −1

2
ln(Nπ)−N

[(
1− m

N

)
ln
(

1− m

N

)
+
(

1 +
m

N

)
ln
(

1 +
m

N

)]
−

− 1

2

[
ln
(

1− m

N

)
+ ln

(
1 +

m

N

)]
(note that lnP (m) is even in m, as we could have expected). If we now suppose that m � N ,
and the previous computation showed that this is indeed the case, then:

ln
(

1± m

N

)
∼ ±m

N
− 1

2

m2

N2
+ · · ·

and plugging this approximation to the second order in lnP (m) we get:

lnP (m) = −1

2
ln(Nπ)− m2

N
+O(m4)

and exponentiating:

P (m) =
1√
πN

e−
m2

N

Therefore, we learn the interesting fact that for macroscopic systems if m � N the probability
to find m particles in excess or lack in the two halves of the system is distributed along a
Gaussian with σN =

√
N/2 ; we have therefore found the same result as before, since the

relative fluctuation is again of the order N−1/2.
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3.2.1 The monoatomic ideal gas

We now choose a specific system in order to do some explicit computations: the monoatomic
ideal gas. This is a system composed of free point particles that don’t interact4 and therefore has
the following Hamiltonian:

H(P) =
N∑
i=1

~pi
2

2m

The volume occupied by the system in phase space is thus:

Ω(E, V,N) =

∫
~qi∈V

N∏
i=1

d~qi︸ ︷︷ ︸
V N

∫ N∏
i=1

d~piδ

(
N∑
i=1

~pi
2

2m
− E

)
= V N

∫ N∏
i=1

d~pi2m · δ

(
N∑
i=1

~pi
2 − 2mE

)

where we have used the known property of the Dirac δ function:

δ(λx) =
δ(x)

|λ|
λ ∈ R

Now, the sum
∑

i ~pi
2 is the square of the distance of the point P from the origin in momentum

space; this means that the δ selects a spherical surface of radius R =
√

2mE in momentum
space. Therefore:

Ω(E, V,N) = V N2m · Ω̂3N (2mE)

where we have denoted with Ω̂`(R
2) the surface of an `-dimensional hypersphere of radius R,

namely:

Ω̂3N (R2) =

∫ N∏
i=1

d~piδ

(
N∑
i=1

~pi
2 −R2

)
Let us define in general:

Ω̂`(R
2) =

∫
δ(~p 2 −R2)d`p

where ~p is an `-dimensional vector. Using the properties of the δ function we can write:

Ω̂`(R
2) =

∫
δ(|~p| −R) + δ(|~p|+R)

2|~p|
d~p =

∫
δ(|~p| −R)

2R
d~p

where we have neglected the contribution of δ(|~p| + R) since |~p| > 0. Now, since (as it can be
shown in distribution theory) the Dirac δ is the derivative of the Heaviside step function Θ, we
have:

Ω̂`(R
2) =

1

2R

d

dR

∫
Θ(R− |~p|)d~p︸ ︷︷ ︸

V`(R)

and V`(R) is the volume of an `-dimensional hypersphere; its computation is shown in ap-
pendix A, and the result is given by equation (A.2). In the end, we have:

Ω̂`(R
2) =

1

2R

`R`−1π`/2

Γ
(
`
2 + 1

)
4It could be legitimately argued that strictly speaking such a system will never reach an equilibrium: since the

particles don’t interact nor collide their velocities will always be equal to the initial ones, whatever they were; for
example if in the initial state the kinetic energy of the system is held by only one particle (all the others being still),
that particle will always be the only one moving and all the remaining ones will always stay still. We can solve
this problem in two ways: we can either suppose that some interaction between the particle exists and such that
it is sufficient to establish an equilibrium but weak enough to be neglected, or we can suppose that the particles
exchange energy with the walls of the system through the collisions and that the walls “give back” this energy to
the other particles when they impact them.
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where Γ is Euler’s gamma function5. Therefore:

Ω(E, V,N) = V N2m
1

2
√

2mE

3N
(√

2mE
)3N−1

π3N/2

Γ(3
2N + 1)

which, after some reshuffling, can be rewritten as:

Ω(E, V,N) =
3N

2E
V N (2πmE)

3
2
N

Γ
(

3
2N + 1

) (3.1)

If we now compute the probability density in configuration space, i.e. we integrate ρ over the
momenta, we get:

ρ(Q) =

∫
dPρ(Q,P) =

∫
dP

δ(H− E)

Ω(E, V,N)
=

∫
dP

1

Ω(E, V,N)
δ

(
P2

2m
− E

)
=

1

V N

which is intuitively clear since no forces act on the particles and thus they can be found in any
point of our system with equal probability.
If we now think of our system as a cubic box and mentally divide it into a right and a left half
we will have that the probability to find the i-th particle in one of these two halves is 1/2:

p(~qi ∈ V/2) =

∫
~qi∈V/2

d~qiρ(Q) =
1

V N
V N−1V

2
=

1

2

and so the probability that all the particles are in the same half of the system is:

p(Q ∈ V/2) =
1

2N

This is exactly what we have already seen in 3.2.

3.2.2 Statistics and thermodynamics

The fundamental postulate of statistical mechanics

We still have not established a link between the ensemble formalism that we are developing
and the thermodynamics of a system. This is what we are now going to do.

From thermodynamics we know (see 1.1.2 and 1.1.3) that all the properties of a system can be
obtained from its entropy through appropriate differentiations; we would therefore like to de-
fine the entropy of a system within the microcanonical ensemble.

However, we have no clues on what we can do in order to define it; of course we must link S
with some property of the microcanonical ensemble of our system, but we have nothing that
can suggest us what we might use.
After all the only really new concept that we have introduced with the ensemble formalism is
the phase space volume Ω, so we can think that this is what must be related to the entropy.

5Remember that it is defined as:

Γ(z) =

∫ +∞

0

tz−1e−tdt

and if n ∈ Z, then Γ(n) = (n− 1)!.
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We can understand that since it looks like we are at a dead end we have to “artificially” intro-
duce something, i.e. we must do some assumptions in order to proceed.
The assumption we make is the fundamental postulate of statistical mechanics:

S(E, V,N) = kB ln Ω(E, V,N) (3.2)

where kB is Boltzmann’s constant, needed to give the entropy S the right dimensions6.
Unfortunately there is no intuitive way to justify this postulate (in general we could have sup-
posed that S was proportional to some power of Ω, or some other function different from the
logarithm), it is something we have to take as it is.
However this doesn’t mean that we must “religiously” belive in it; it is true that being a postu-
late we can’t really “prove” equation (3.2), but we certainly can try to see if it is “reasonable”.
In other words what we would like to do now is to verify if S as defined in the fundamental
postulate of statistical mechanics is really the entropy of a system; this means that we want to
see, even if only qualitatively, if the consequences of (3.2) do agree with what we know about
the thermodynamics of a system or not.
In particular we have seen in 1.1.2 that in order to obtain all the thermodynamic information we
need about a macroscopic system we just need to take appropriate derivatives of the entropy:

1

T
=
∂S

∂E |V,N

P

T
=
∂S

∂V |E,N

µ

T
= − ∂S

∂N |E,V
(3.3)

These relations are equivalent to those that we have actually seen which involve the derivatives
of the energy E:

T =
∂E

∂S |V,N
P = −∂E

∂V |S,N
µ =

∂E

∂N |S,V

In fact, similarly to what we have seen in 1.1.5 we have that:

∂S

∂V |E,N

∂V

∂E |S,N

∂E

∂S |V,N
= −1

∂S

∂N |E,V

∂N

∂E |S,V

∂E

∂S |NV
= −1

and thus:

P = T
∂S

∂V
= −T 1

∂V
∂E

∂E
∂S

= −T 1
∂V
∂ET

= −∂E
∂V

µ = −T ∂S
∂N

= T
1

∂N
∂E

∂E
∂S

= T
1

∂N
∂E T

=
∂E

∂N

Therefore what we are going to do in the following is to see if the relations written in (3.3)
follow from (3.2).

Before proceeding let us make an observation that will be useful for the computations.
Since ln Ω ∝ S and S is extensive, the quantity ln Ω is itself extensive and thus we can always
write it as7:

ln Ω(E, V,N) = Nf

(
E

N
,
V

N

)
(3.4)

where f is a generic function.
6In general, we should have used a generic constant k, but at the end of the computations that allow to rederive

the thermodynamics of the system we would find out that k is precisely kB , so we use kB from the beginning just
for the sake of simplicity.

7In fact, since ln Ω is some extensive function f then factorizing an N we have:

ln Ω(E, V,N) = f(E, V,N) = f

(
N
E

N
,N

V

N
,N

N

N

)
= Nf

(
E

N
,
V

N
, 1

)
:= Nf

(
E

N
,
V

N

)
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E1 V1

N1

E2 V2

N2

Figure 3.1: Two systems in thermal equilibrium

Temperature and statistical mechanics

Let us now see how the temperature of a system comes into play within the microcanonical
ensemble.
Consider two systems, which we call 1 and 2, of volume Vi, energy Ei, at temperature Ti and
each composed of Ni particles, with i = 1, 2 (see figure 3.1), separated by a fixed wall that
allows only the exchange of energy between the two systems. We call E = E1 + E2 the total
energy and N = N1 + N2 the total number of particles, and we know from thermodynamics
that if initially T1 6= T2 then after some time the two systems reach an equilibrium and have the
same temperature T .
Now, it is intuitively clear8 that the phase space volume of the whole system is:

Ω(E) =

∫
Ω1(E1)Ω2(E − E1)dE1

In fact the interpretation of this expression is the following: for a fixed value of E1 the total
number of microstates of the whole system is Ω1(E1)Ω2(E−E1) (remember that E2 = E−E1),
since for any of the Ω1(E1) possible microstates of the system 1 the system 2 can be in any of its
Ω2(E−E1) possible states; therefore the total number of the possible states of the whole system
can be obtained integrating over all the possible values of E1.
Now, since ln Ω is extensive and can be written as in equation (3.4), we have (neglecting the
dependence of f on the volume, since it is fixed):

Ω(E) =

∫
dE1e

N1f1

(
E1
N1

)
+N2f2

(
E−E1
N−N1

)

and defining εi = Ei/Ni, ε = E/N and ni = Ni/N :

Ω(E) = N1

∫
dε1e

N [n1f1(ε1)+n2f2(ε−ε1)]

8If this is not the case we can anyway easily obtain this result in a more “formal” way. In fact, we have:

Ω(E) =

∫
dΓδ(H− E) =

∫
dΓ1dΓ2δ(H1 +H2 − E) =

∫
dΓ1Ω2(E −H1)

where we have integrated over dΓ2 in the last step. Now, using a “trick”:

Ω(E) =

∫
dE1

∫
dΓ1Ω2(E −H1)δ(H1 − E1) =

∫
dE1

∫
dΓ1Ω2(E − E1)δ(H1 − E) =

=

∫
dE1Ω2(E − E1)

∫
dΓ1δ(H1 − E1) =

∫
dE1Ω2(E − E1)Ω1(E1)
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Now, this integral can be approximated using the saddle point approximation (see appendix B).
The result is9:

Ω(E) ≈ N1
eN[n1f1(ε∗1)+n2f2(ε−ε∗1)]√

2πN |[n1f ′′1 (ε∗1) + n2f ′′2 (ε− ε∗1)]|

where ε∗1 is the value of ε1 that maximizes the integrand of Ω(E), i.e. the exponent n1f1(ε1) +
n2f2(ε− ε1). We therefore have:

n1f
′
1(ε∗1)− n2f

′
2(ε− ε∗1) = 0

which means (remember equation (3.4)):

∂

∂E1
ln Ω1(E1)|E∗1 =

∂

∂E2
ln Ω2(E2)|E∗2 (3.5)

We have therefore found that from the formulation of the problem in the microcanonical ensem-
ble, at thermal equilibrium the only microscopic configurations that significantly contribute to
Ω(E) are those with E1 = E∗1 and E2 = E∗2 , which are such that equation (3.5) holds.
From the fundamental postulate of statistical mechanics (3.2), equation (3.5) becomes:

∂S

∂E1 |E∗1
=

∂S

∂E2 |E∗2

However from thermodynamics we know that ∂S/∂E = 1/T , so in the end we have:

T1 = T2

Thus from the microcanonical definition of entropy we have obtained the well known fact that
when two bodies are put in thermal contact they reach an equilibrium state were both have the
same temperature10.
Now, in order to explicitly see that the main contribution to Ω(E) =

∫
Ω1(E1)Ω2(E − E1)dE1

comes from the configuration where E1 = E∗1 , let us expand in a Taylor series the integrand
around E1 = E∗1 (and we write explicitly f ′′1 (ε∗1) = −|f ′′1 (ε∗1)| and f ′′2 (ε − ε∗1) = −|f ′′2 (ε − ε∗1)|
because the second derivatives of f1 and f2 are negative in ε∗1 and ε−ε∗1, since they are maxima):

Ω1(E1)Ω2(E − E1) = eN [n1f1(ε1)+n2f2(ε−ε1)] ≈

≈ eN[n1f1(ε∗1)+n2f2(ε−ε∗1)]e−N[n1|f ′′1 (ε∗1)|+n2|f ′′2 (ε−ε∗1)|](ε−ε∗1)2
=

= const. · e−N[n1|f ′′1 (ε∗1)|+n2|f ′′2 (ε−ε∗1)|](ε−ε∗1)2
= const. · e−[n1|f ′′1 (ε∗1)|+n2|f ′′2 (ε−ε∗1)|] 1

N
·(E−E∗1 )2

where we have used the definitions of ε1 and ε. This is a Gaussian with variance:

σ2
E1

:=
〈
(E − E∗1)2

〉
∝ N

9The derivatives are intended to be taken with respect to the argument of the function:

f ′1(ε1) =
∂

∂ε1
f1(ε1) f ′2(ε− ε1) =

∂

∂(ε− ε1)
f2(ε− ε1)

10Alternatively we could have used a different approach to come to the same result. In fact from our analysis
we have that two systems at thermal equilibrium in the microcanonical ensemble are such that ∂S/∂E has the
same value for both, and from thermodynamics we know that two systems at thermal equilibrium share the same
temperature; thus ∂S/∂E must be related to the temperature of a system, and since it has the dimensions of the
inverse of a temperature we can define the temperature in the microcanonical ensemble as:

1

T
=
∂S

∂E
= kB

∂

∂E
ln Ω(E, V,N)

Also in this case we get to the result T1 = T2.
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0
x

X

~qi

Figure 3.2: System with variable volume

Thus, the relative fluctuation of E1 with respect to E∗1 is:

σE1

E1
∝ 1√

N

Again these fluctuations are absolutely negligible in the thermodynamic limit, as we expected,
and so indeed E∗1 is the only value of E that significantly contributes to Ω(E) (in other words,
for large N it becomes a very sharply peaked function).

Pressure and statistical mechanics

We now want to see, just like we have done with the temperature, what role does the pressure
of a system play in the microcanonical ensemble.
Let us therefore consider a system on which we can act using a piston of cross section A (see
figure 3.2). If the pressure of the gas is P , in order to maintain the system in equilibrium we
must exert a force F = PA on the piston.
If the gas inside the box is ideal the Hamiltonian of the system can be written as:

H(Q,P, X) = Ekin +
N∑
i=1

u(qix −X)

where Ekin is the kinetic energy of the particles and u is the potential that models the presence
of the piston, so it will be a function with very small values for qix < X and that diverges for
qix → X−. Therefore, the i-th particle will be subjected to the force (which is of course directed
along the x direction):

Fi = − ∂

∂qix
u(qix −X)

and the (microscopic and istantaneous) force acting on the piston will be
∑

i Fi; therefore the
force done by the piston on the system is such that:〈

−
∑
i

Fi

〉
= PA (3.6)

We also have:

Fi = − ∂

∂qix
u(qix −X) =

∂

∂X
u(qix −X)

from which we get: ∑
i

Fi =
∑
i

∂u

∂X
=
∂H
∂X

Therefore, equation (3.6) becomes:

PA =

〈
−∂H
∂X

〉
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1 2

Figure 3.3: System with variable number of particles

and since V = XA we have:

P = −
〈
∂H
∂V

〉
Now, by definition:〈

∂H
∂V

〉
=

1

Ω(E, V,N)

∫
dΓ
∂H
∂V

δ(H− E) Ω(E, V,N) =

∫
dΓδ(H− E)

and therefore:
∂Ω

∂V
=

∫
dΓδ′(H− E)

∂H
∂V

where with δ′(H − E) we mean the derivative of δ(H − E) with respect to H − E. Thus,
δ′(H− E) = −∂δ(H− E)/∂E and since E is a parameter (it’s fixed):

∂Ω

∂V
= − ∂

∂E

∫
dΓ
∂H
∂V

δ(H− E)︸ ︷︷ ︸
Ω〈∂H/∂V 〉=−ΩP

=
∂

∂E
(ΩP ) = Ω

∂P

∂E
+
∂Ω

∂E
P

Dividing both sides of the equation by Ω we get:

∂

∂V
ln Ω =

∂P

∂E
+ P

∂

∂E
ln Ω

and considering the definition (3.2) of entropy:

∂S

∂V
= kB

∂P

∂E
+ P

∂S

∂E
= kB

∂P

∂E
+
P

T

We know that S, V andE are extensive quantities while P and T are intensive; therefore ∂S/∂V
and P/T are intensive while ∂P/∂E ∝ N−1. This means that in the thermodynamic limit
∂P/∂E vanishes, and thus:

P

T
=
∂S

∂V

which is exactly what we were looking for (see (3.3)).

Chemical potential and statistical mechanics

We conclude with the chemical potential.
Let us therefore consider a system like that represented in figure 3.3, namely a system divided
into two subsystems 1 and 2 connected by a hole that allows the exchange of particles. Its
Hamiltonian will be:

H = H1 +H2

where:

Hi =

N∑
j=1

~pj
(i)2

2m
+

1

2

∑
j 6=k
V
(
~qj

(i) − ~qk(i)
)

i = 1, 2
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and V is the interaction potential.
If we suppose that the hole that connects the two subsystems is long enough they will not
interact with each other; calling N the total number of particles we will have that:

Ω(E, V,N) =

∫
dΓ1dΓ2δ(H1 +H2 − E) =

N∑
N1=0

∫ E

0
dE1Ω1(E1, N1)Ω2(E − E1, N −N1)

where we are summing over N1 because the possible configurations of the system now include
the number of particles that are in the two subsystems.
If we now divide [0, E] in very small intervals of width ∆, we can write:∫ E

0
dE1f(E1) ≈ ∆

E/∆∑
i=1

f(i∆)

with f a generic function, so that we have:

Ω(E,N) = ∆

N∑
N1=0

E/∆∑
i=1

Ω1(i∆, N1)Ω2(E − i∆, N −N1)

If we now callE∗1 = i∗∆ andN∗1 the values ofE1 andN1 for which the summand has the largest
value, we will surely have:

∆ ·Ω1(E∗1 , N
∗
1 )Ω2(E−E∗1 , N −N∗1 ) < Ω(E,N) < (N + 1)

E

∆
·∆ ·Ω1(E∗1 , N

∗
1 )Ω2(E−E∗1 , N −N∗1 )

(namely the largest term is smaller than the whole sum which is in turn smaller than the sum
where every term has been substituted with the largest one).
Therefore, taking the logarithm and multiplying by kB :

kB ln ∆ + S∗1 + S∗2 < S < S∗1 + S∗2 + kB ln(N + 1) + kB lnE

and since the entropy is extensive in the thermodynamic limit we get:

S(E,N) = S1(E∗1 , N
∗
1 ) + S2(E − E∗1 , N −N∗1 ) +O(lnN)

and we can also neglect the last term.
Using the microcanonical definition of entropy (3.2), since E∗1 and N∗1 are the values of E1 and
N1 that maximize S we will have:

∂

∂E1
[S1(E1, N1) + S2(E − E1, N −N1)]|E∗1 ,N∗1

= 0

∂

∂N1
[S1(E1, N1) + S2(E − E1, N −N1)]|E∗1 ,N∗1

= 0

We have already previously encountered the first equation, which has led us to T1 = T2. Fo-
cusing now on the second one, this leads to:

∂

∂N1
S1(E1, N1)|E∗1 ,N∗1 =

∂

∂N2
S2(E2, N2)∣∣∣∣ E∗2=E−E∗1

N∗2 =N−N∗1

Therefore if two systems can exchange particles they will have not only the same temperature
but also the same value of ∂S/∂N . From thermodynamics we know that this must be related
to the chemical potential µ of the system; in particular since [µ] = J and [∂S/∂N ] = J/K, we will
have:

∂S

∂N
= −µ

T

where however the minus sign cannot be predicted11.
11Remember that this, in the end, is only a qualitative way to show that the fundamental postulate of statistical

mechanics is reasonable and leads to results compatible to what we know about the thermodynamics of a system.
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Conclusions

Therefore with these qualitative reasonings we have shown that the fundamental postulate of
statistical mechanics, i.e. equation (3.2), leads to what we expect about the thermodynamics of
a system (namely equation (3.3)).
We can therefore conclude that it is indeed a reasonable assumption.

3.2.3 Some remarks and refinements in the definition of entropy

As we have given them, the definitions of the phase space volume Ω and entropy S are not
correct and can give rise to annoying problems and paradoxes.

The dimension of the phase space volume

To begin with we can note that the definition of entropy given in equation (3.2), the funda-
mental postulate of statistical mechanics, makes no sense since Ω is dimensional. In fact Ω is
defined as an integral over dΓ and:

dΓ =
N∏
i=1

d~qid~pi ⇒ [dΓ] =

(
m · kg m

s

)3N

= [Ω]

Therefore, if we want to take the logarithm of Ω we must first adimensionalize it; to do so
we must introduce a constant h with dimensions m · (kg m/s) = J · s, so that we can actually
redefine the phase space volume as:

Ω(E, V,N) =

∫
dΓ

h3N
δ(H− E)

which is now really adimensional and now equation (3.2) makes sense.

A legitimate question could now be: what is the value of h? Which constant is it?
Unfortunately, within classical statistical mechanics it is impossible to establish it; only in quan-
tum statistical mechanics the constant h acquires a precise meaning, and in particular it turns
out that h is Planck’s constant:

h = 6.62 · 10−34 J s

Let us finally note that dividing Ω by h3N and integrating over the phase space can also be inter-
preted as dividing the whole phase space in cells of volume h3, thus “discretizing” the possible
states of the system considering as equivalent all the points inside a cell12, and summing over
these cells13: in this sense the entropy gives a measure of the quantity of such possible states.

Extensivity of the entropy and the Gibbs paradox

Even with the introduction of hwe still have some problems. In particular, from the expression
(3.1) of Ω(E, V,N) for an ideal gas we have:

ln Ω(E, V,N) = ln

(
3N

2E

)
− 3N lnh+N lnV +

3

2
lnπ +

3

2
N ln(2mE)− 3

2
ln

(
3

2
N

)
+

3

2
N

12In other words, we consider all the points inside a cell to represent only a single state. This is just an “approx-
imation” in classical statistical mechanics, but in quantum statistical mechanics it turns out that there really is only
one state in every of those cell in phase space.

13To be a bit more precise: the error that we make approximating the integral over the whole phase space with a
sum over cells of linear dimension h is perfectly negligible. This is due to the fact that h is ridiculously small with
respect to the common scales of a macroscopic system.
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Since E and N are both extensive, E/N is intensive and thus remains constant in the thermo-
dynamic limit; this means that for large N we can neglect the first term14 so that in the end:

ln Ω(E, V,N) = N ln

[
V

(
4πm

3h2

E

N

)3/2
]

+
3

2
N

and therefore the entropy of the system will be:

S(E, V,N) = kBN ln

[
V

(
4πm

3h2

E

N

)3/2
]

+
3

2
kBN (3.7)

This expression is rather problematic. In fact, first of all we can note that written in this way it
is not extensive since it contains terms like N lnV and N lnN . Furthermore, (3.7) gives rise to a
catastrophic paradox known as the Gibbs paradox.
In order to understand it let us consider a system divided by a wall into two subsystems each
of Ni particles of mass mi, volume Vi and energy Ei (with i = 1, 2). The entropy of the system
in this initial state is:

Si =
3

2
kB(N1 +N2) + kB

{
N1 ln

[
V1

(
4πm1

h2

E1

N1

)3/2
]

+N2 ln

[
V2

(
4πm2

h2

E2

N2

)3/2
]}

If we now remove the wall the two gases will mix and the entropy of this final state of the
system will be:

Sf =
3

2
kB(N1 +N2) + kB ln

[
(V1 + V2)N1+N2

(
4π

3h2

) 3
2

(N1+N2)(m1E1

N1

) 3
2
N1
(
m2E2

N2

) 3
2
N2
]

Therefore, the entropy of the system will have changed during this process by the amount:

∆S = Sf − Si = kB ln

[
(V1 + V2)N1+N2

V N1
1 V N2

2

]
= kB

[
N1 ln

(
V1 + V2

V1

)
+N2 ln

(
V1 + V2

V2

)]
called entropy of mixing, which is always positive. If m1 6= m2 this is a correct result, since the
mixing of the two gases is an irreversible process.
However, since ∆S doesn’t depend on m1 and m2 this result holds also in the case m1 = m2.
But this is a paradox: the mixing of two identical gases is a reversible process (we can recover
the initial state reinserting the wall) so the entropy of the whole system shouldn’t increase if
we remove the wall. Furthermore, the fact that ∆S > 0 also when m1 = m2 is catastrophic
because it means that the entropy of a system depends on the history of the system itself, rather
than on its state. But this ultimately means that entropy doesn’t exist at all: consider a system
of energy E made of N particles contained in a volume V ; then we can think that this system
has been obtained from the union of M pre-existing subsystems, with M arbitrarily large. This
means that the entropy of the system has increased an arbitrarily large amount of times from
its initial value, and therefore the entropy of the system in its final configuration (energy E,
volume V , N particles) is greater than any arbitrary number: in other words, assuming (3.7) as
the entropy of an ideal gas we would conclude that the entropy of any ideal gas is infinite!
There’s clearly something wrong with the definition of entropy we have given. How can we

14Note that this means that in (3.1) we can simply drop the term 3N/2E (which is what we are going to do in the
future), since it divides the phase space volume by a negligible amount. In fact, from the fundamental postulate of
statistical mechanics (3.2) we have that multiplying Ω by an intensive factor is equivalent to adding a constant to
the entropy; however the entropy of a typical system is so large that adding such a constant doesn’t change sensibly
its value. In other words the phase space volume Ω is so large that multiplying it by a constant does not change
significantly its value.
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solve this problem?
We know that in classical mechanics identical particles are distinguishable; however in order
to solve the Gibbs paradox we must treat them as undistinguishable, just like we would do
in quantum mechanics: this way if we exchange two particles the representative point of the
system in phase space won’t change. Now, since N particles can be exchanged in N ! different
ways there will be N ! different configurations of the system relative to the same representative
point. This means that we must redefine the phase space volume of the system reducing it by
a factor N ! (which is sometimes called Boltzmann factor):

Ω(E, V,N) =
1

N !

∫
dΓ

h3N
δ(H− E)

In this way we can solve all the problems we have described. In fact, using this definition of
the phase space volume in the case of the ideal gas we have:

Ω(E, V,N) =
V N

N !h3N

(2πmE)3N/2

Γ
(

3
2N + 1

) S(E, V,N) =
5

2
NkB +NkB ln

[
V

N

(
4πm

3h2

E

N

)3/2
]

This expression for the entropy is clearly extensive since it is proportional to N and the loga-
rithm depends only on V/N and E/N . Furthermore, the computation of the entropy of mixing
of two gases now gives:

∆S = kB

[
(N1 +N2) ln

(
V1 + V2

N1 +N2

)
−N1 ln

V1

N1
−N2 ln

V2

N2

]
If the two gases are different, their densities Ni/Vi will be different and so ∆S > 0 as it must
be. However, if the two gases are identical this time we have V1/N1 = V2/N2 = V/N and the
entropy of mixing vanishes.

This solution to the Gibbs paradox, however, is rather an ad hoc one. Unfortunately there’s no
way to understand where does the Boltzmann factor really come from within the framework of
classical statistical mechanics. This can be made clearer within quantum statistical mechanics:
in that case theN ! comes from the fact that identical particles are intrinsically indistinguishable
and does not “disappear” in the classical limit.

Conclusions

To conclude, the correct definition of the phase space volume that eliminates all the problems
that we have mentioned, and the one we will always use in the future, is:

Ω(E, V,N) =
1

N !

∫
dΓ

h3N
δ(H− E)

For the sake of simplicity we now redefine dΓ as dΓnew = dΓold/N !h3N (in other words we
“incorporate” the 1/N !h3N factor inside dΓ). This way, for the ideal gas we have:

Ω(E, V,N) =
V N

N !h3N

(2πmE)3N/2

Γ
(

3
2N + 1

)
3.2.4 Some explicit computations for the monoatomic ideal gas

Now that we have fixed everything, in order to understand if what we have done until now
makes sense let us use all this machinery to see what happens when we apply it to the monoatomic
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ideal gas (which is the simplest system we can think of).
From what we have just seen above the phase space volume of the system is:

Ω(E, V,N) =
V N

N !h3N

(2πmE)3N/2

Γ
(

3
2N + 1

)
and the entropy can be rewritten more shortly as:

S(E, V,N) = NkB

[
5

2
− ln(ρλ3)

]
(3.8)

where:

ρ =
N

V
λ =

√
3h2

4πm
· N
E

Therefore, we can now compute:

1

T
=
∂S

∂E |V,N
=

3

2
N
kB
E

and thus:
E =

3

2
NkBT

We have really obtained the expression of the energy for an ideal gas!

Now, going further:
P

T
=
∂S

∂V |E,N
=
NkB
V

from which we get the ideal gas law:

PV = NkBT

The efforts we have done are therefore not useless, since we are really obtaining all the thermo-
dynamics of the system from the fundamental postulate (3.2)!
This further confirms that this postulate is reasonable, and again justifies its introduction.

To conclude we can also compute the chemical potential for an ideal gas, which turns out to be:

µ = −T ∂S
∂N |E,V

= kBT ln

[
V

N

(
4πmE

3Nh2

)3/2
]

= −kBT ln(ρλ3)

The Maxwell-Boltzmann distribution

We could now ask: can we determine the probability distribution of the momentum, or equiv-
alently of the velocity, of a single particle?
Since we are only interested in the probability density of the momentum of a single particle,
say the j-th one, we take the probability distribution of the whole system in phase space and
then integrate over all the coordinates we do not care about, i.e. ~qi ∀i and ~pi ∀i 6= j, with the
constraint that ~pj has some given value ~p; this way we are left with the probability distribution
of a single particle. We therefore have:

ρ(~p) = 〈δ(~pj − ~p)〉 =
1

Ω(E, V,N)

∫
dΓNδ

(
N∑
i=1

~pi
2

2m
− E

)
δ(~pj − ~p)
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where we have written dΓN to show explicitly that it is relative to all the N particles; of course
dΓN = dΓN−1d~qjd~pj and so integrating over ~qj and ~pj we get:

ρ(~p) =
1

Ω(E, V,N)
V

∫
dΓN−1δ

[
N−1∑
i=1

~pi
2

2m
−
(
E − ~p 2

2m

)]
=

V

Ω(E, V,N)
Ω

(
E − ~p 2

2m
,V,N − 1

)
where for simplicity we have rearranged the indices i that label the particles so that the j-th
one is the last (otherwise, the sum over i should have been written as

∑N
i=1,i 6=j).

Substituting the expressions of Ω for the ideal gas:

ρ(~p) = V
N !h3N

(
3
2N
)
!

V N (2πmE)3N/2
·
V N−1

[
2πm

(
E − ~p 2

2m

)]3(N−1)/2

(N − 1)!h3(N−1)
[

3
2(N − 1)

]
!

=

= h3N

(
3
2N
)
![

3
2(N − 1)

]
!

[
2πm

(
E − ~p 2

2m

)]−3/2(
1− ~p 2

2mE

)3N/2

Now, since N is large we can use Stirling’s approximation (see appendix C) to see how:

A :=

(
3
2N
)
![

3
2(N − 1)

]
!

behaves for large N . We have:

lnA ∼ 3

2
N ln

(
3

2
N

)
− 3

2
N − 3

2
(N − 1) ln

[
3

2
(N − 1)

]
+

3

2
(N − 1)

and with some reshuffling we get to:

lnA ∼ 3

2
N ln

(
N

N − 1

)
+

3

2
ln

3

2
+

3

2
ln(N − 1)

If N →∞, the first term vanishes because the argument of the logarithm tends to 1; in the end,
for large N we have:

lnA ∼ 3

2
ln

3

2
+

3

2
ln(N − 1) ∼ 3

2
ln

3

2
+

3

2
lnN

and exponentiating:

A ∼
(

3

2

)3/2

N3/2

Therefore if we also consider that ~p 2/2m� E, then:

ρ(~p) = h3N5/2

(
2

3
· 2πmE

)−3/2(
1− ~p 2

2mE

)3N/2

Now, the last term becomes an exponential in the thermodynamic limit; in fact, defining ε =
E/N we have:(

1− ~p 2

2mE

)3N/2

=

(
1− ~p 2

2mεN

)3N/2
M :=3N/2

=

(
1− 3~p 2

4mε
· 1

M

)M
M→∞−→ e−

3~p 2

4mε

Therefore:

ρ(~p) = h3N5/2

(
2

3
· 2πmE

)−3/2

e−
3N

4mE
~p 2
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Since for the ideal gas E = 3NkBT/2, we have:

ρ(~p) = h3N(2πmkBT )−3/2e−
3N

4mE
~p 2

= (2πmkBT )−3/2e−
3N

4mE
~p 2+lnN+3 lnh

Now, lnN � N for large N and h is a constant so we can neglect these last two contributions
in the exponential; therefore:

ρ(~p) = (2πmkBT )−3/2e
− ~p 2

2mkBT

This is the Mawxell-Boltzmann distribution for the momentum. If we want to express it in terms
of the velocity ~v, then from the fact that15 ρ(~v)d~v = ρ(~p)d~p = m3ρ(~p)d~v we have:

ρ(~v) =

(
m

2πkBT

)3/2

e
− m~v2

2kBT

3.2.5 The foundations of statistical mechanics

Before proceeding to the study of the canonical and grand canonical ensembles, let us stop for
a moment to reflect on the deep reasons that led us to the formulation of the microcanonical
ensemble. This is extremely important since as we shall later see both the canonical and the
grand canonical ensembles are based upon the microcanonical one, so understanding why the
microcanonical ensemble is the way it is can help us determining the foundations of statistical
mechanics.

In particular one could note that the way we have introduced the microcanonical ensemble is
not really “philosophically” satisfying, particularly because of the a priori equal probability
postulate. We could in fact ask ourselves: is this postulate realistic? In other words: are all the
microstates of any given system really equally probable, or can we find cases where this is not
true? And if they are really equally probable, why is it so?

The topic is very wide and complicated (in its deepest nature it is still an open problem), and
since it is not essential in order to understand the rest of this chapter we postpone its study in
appendix D.

3.3 The canonical ensemble

Until now we have only considered systems with a fixed value of energy, for which we have
seen that the phase space volume is related to the entropy.
This kind of ensemble is however really restricting also because the computations made within
it are quite complicated (in 3.2.1 we had to resort to the geometry of hyperspheres in order to
compute the phase space volume of the ideal gas, which is the simplest system we can think
of!). We therefore need to generalize our considerations to systems which have V and N fixed,
but variable energy; in other words we want to see what happens when we remove the con-
straint of keeping the energy of a system fixed.
This is the essence of the canonical ensemble.
However, in order to determine the properties of this ensemble the only thing we can do is to
use the tools that we already know, namely the microcanonical ensemble. What we are going
to do therefore, in just a few words, is to consider an isolated system (for which the methods of
the microncanonical ensemble apply) and see what happens if we consider a small portion of it.

15In fact, what must remain invariant is the probability to find a particle with a momentum or velocity in a
given interval. In other words, if ρ(~p)dp is the probability of finding a particle with momentum in [~p, ~p + d~p], or
equivalently in [m~v,m~v + md~v], we see that this is equal to the probability of finding a particle with velocity in
[~v,~v + d~v], which is exactly ρ(~v)d~v.
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N

Nb

T

Figure 3.4: Canonical ensemble

Let us therefore consider a system like the one represented in figure 3.4: we have a macroscopic
isolated system, which we call the heat bath, at temperature T composed of Nb particles, and
we also consider a small (but still macroscopic) subsystem of the bath containing N particles
(namely Nb, N � 1 but N � Nb); for now N and Nb are fixed so the “walls” that enclose the
small subsystem are fixed and impermeable and only allow the exchange of energy between
the two. We also call E the energy of the whole system.
Now, since the total system (the heat bath and the small subsystem) is isolated we can apply to
it the tools of the microcanonical ensemble; in particular the probability density in phase space
of the whole system will be:

ρ(Qb,Pb,Q,P) =
1

Ω(E)
δ [Hb(Qb,Pb) +H(Q,P) + V(Qb,Q)− E]

where V(Qb,Q) is the term containing the interaction between the heat bath and the subsystem.
This term must exist if we want the two systems to exchange energy, but what we now suppose
is that it is neglibigle with respect to the other terms (the energy E and the Hamiltonians).
Since we want to study the properties of the small subsystem we are interested in finding a
probability density which does not contain any information about the heat bath; in other words
we want to determine the so called marginalized probability density:

ρ(Q,P) =

∫
ρ(Qb,Pb,Q,P)dΓb

namely:

ρ(Q,P) =
1

Ω(E)

∫
δ [Hb(Qb,Pb)− (E −H(Q,P))] dΓb

Now, by definition:

Ωb(E′) =

∫
δ
(
Hb(Qb,Pb)− E′

)
dΓb

so we can write:

ρ(Q,P) =
Ωb(E −H(Q,P))

Ω(E)

From the fundamental postulate of statistical mechanics, in terms of the entropy Sb of the heat
bath we have:

Ωb(E −H) = e
1
kB

Sb(E−H)

Since the subsystem is much smaller than the heat bath we have16 H � E and so we can
expand Sb around E:

Ωb(E −H) = e
1
kB

(
Sb(E)−H ∂

∂E
Sb(E)+H

2

2
∂2

∂E2 Sb(E)+···
)

16In fact, E ∝ N +Nb whileH ∝ N � Nb ≈ N +Nb, so indeedH � E.
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Since:
∂Sb

∂E
=

1

T

∂2Sb

∂E2
=

∂

∂E

1

T
= − 1

T 2

∂T

∂E
= − 1

T 2

(
∂E

∂T

)−1

= − 1

T 2Cb
V

where Cb
V is the specific heat of the bath at constant volume, then:

Ωb(E −H) = e
1
kB

(
Sb(E)−H

T
−H

2

2
1

T2Cb
V

+···
)

Now, H ∝ N and H2/Cb
V ∝ N2/Nb = N(N/Nb) � N : all the terms beyond the first order can

be neglected17. Considering that Ω(E) =
∫
dΓdΓbδ(Hb +H − E) =

∫
dΓΩb(E −H), this leads

to the following expression of the canonical probability density:

ρ(Q,P) =
e
−βH(Q,P)+ 1

kB
Sb(E)∫

dΓe
−βH(Q,P)+ 1

kB
Sb(E)

=
e−βH(Q,P)∫
dΓe−βH(Q,P)

where:
Z =

∫
dΓe−βH(Q,P) (3.9)

is called partition function of the system. Sometimes e−βH is called Boltzmann weight.

3.3.1 The canonical and the microcanonical ensemble

We could now ask how the microcanonical and the canonical ensembles are related.
Since in the canonical ensemble we have removed the constraint of having constant energy,
the energy of a system will in general fluctuate around its mean value. We can therefore ask if
these fluctuations are relevant or not. In fact if it turns out that they are negligible (at least in the
thermodynamic limit) then we can conclude that the canonical and microcanonical ensembles
are equivalent.

Let us therefore compute 〈H〉 and σ2
E =

〈
(H− 〈H〉)2

〉
.

First of all, from the definition (3.9) of the canonical partition function we have:

〈H〉 =
1

Z

∫
e−βHHdΓ = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β

and:

σ2
E =

〈
H2
〉
− 〈H〉2 =

1

Z

∂2Z

∂β2
−
(
−∂ lnZ

∂β

)2

=
∂2 lnZ

∂β2
= −∂ 〈H〉

∂β
= −∂T

∂β

∂ 〈H〉
∂T

= kBT
2CV

⇒ σ2
E = kBT

2CV

This is a fluctuation-dissipation relation, which we couldn’t find using only thermodynamics.
Therefore, the relative fluctuation of energy is:

σE
〈H〉

=

√
kBT 2CV
〈H〉

Both 〈H〉 and CV are extensive quantities, i.e. proportional to N , and therefore:

σE
〈H〉

∝ 1√
N

17They are all terms that are smaller the bigger the heat bath is.
This fact could also be justified saying that we can consider the limit where the dimensions of the heat bath tend to
infinity, therefore Cb

V →∞ and we can neglect all the terms from the second order on.
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Thus, if our system is macroscopic the relative fluctuations of energy are absolutely negligible
(as we have already seen, for N ∼ 1023 this relative fluctuation is of the order of 10−11)!
We can therefore conclude that the canonical and microcanonical ensembles are indeed equiv-
alent.

3.3.2 Helmholtz free energy

Since we have just shown that the microcanonical and the canonical ensembles are equivalent
we expect that the thermodynamics of a system can be derived also from the canonical ensem-
ble, but how?
What we now want to show is that the Helmholtz free energy of a system (see 1.1.3) finds a nat-
ural place in the canonical ensemble. In particular we want to show that Z = e−βF , where F
is the free energy of the system. This way, once the canonical partition function Z has been
computed we can obtain the Helmholtz free energy as F = −kBT lnZ, and with appropriate
derivatives we can obtain all the thermodynamics of the system (see 1.1.3).

The first thing we can note is that the canonical partition function Z can be written in terms of
the microcanonical phase space volume Ω(E):

Z =

∫
e−βHdΓ =

∫
dΓ

∫
dEδ(H− E)e−βH =

∫
dEe−βE

∫
dΓδ(E −H)︸ ︷︷ ︸

Ω(E)

=

∫
dEe−βEΩ(E)

(where we have only inserted a
∫
dEδ(H − E) = 1). This means that the canonical ensemble

can be thought of as an ensemble of microcanonical systems each weighted with e−βE . Further-
more, if the HamiltonianH is bounded below then we can always shift it by a constant amount
so thatH ≥ 0, and thus:

Z =

∫ ∞
0

e−βEΩ(E)dE (3.10)

which is a Laplace transform! In other words Z is the Laplace transform of Ω(E), and β is the
variable conjugated to E.
From the microcanonical definition of entropy we have Ω(E) = eS(E)/kB = eβTS(E), so that
(3.10) can be rewritten as:

Z =

∫
dEe−β(E−TS)

Now, both E and S are extensive so we can use the saddle point approximation (see appendix
B) to compute the integral. In particular, in order to do so we need to determine the value E of
the energy that maximizes −(E − TS), namely minimizes E − TS. Therefore:

∂

∂E
(E − TS)|E = 0 ⇒ 1− T ∂S

∂E |E
= 0 ⇒ ∂S

∂E |E
=

1

T

and:
∂2

∂E2
(E − TS)|E = −T ∂

2S

∂E2 |E
=

1

TCV

Thus, if CV > 0 (which is always the case since it means that giving heat to a system its tem-
perature will increase) then E is indeed a minimum.
If we now expand the integrand of Z around E:

Z =

∫
dEe

−β(E−TS(E))− β
2TCV

(E−E)2+···

and the values of E that contribute significantly to Z are those such that (E − E)2/CV . 1,
namely |E −E| .

√
CV ∝

√
N : for this reason in the thermodynamic limit we can integrate E
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on the whole real axis (even if E does not span R), since in this way we introduce a perfectly
negligible error. Therefore:

Z =
(
2πT 2CV kB

)1/2
e−β(E−TS(E)) ⇒ lnZ = −β(E − TS(E)) +

1

2
ln
(
2πT 2kBCV

)
The first term of lnZ is extensive, while the second is proportional to lnN ; in the thermody-
namic limit this last contribution vanishes and so:

− 1

β
lnZ = E − TS(E) (3.11)

This is indeed the free energy F of the system if we have E = 〈H〉. However:

〈H〉 =
1

Z

∫
Ee−β(E−TS(E))dE = − ∂

∂β
lnZ =

∂

∂β

[
β(E − TS(E))

]
= E + β

∂

∂β

(
E − TS(E)

)
and:

β
∂

∂β

(
E − TS(E)

)
= β

∂E

∂β

∂

∂E
(E − TS(E))|E = 0

because by definition E is the value of E that extremizes E − TS(E).
Therefore 〈H〉 = E, and the expression in (3.11) is indeed the free energy F of the system:

Z = e−βF

We also see that although the partition function formally allows the system to have any value
of energy, it is largely “dominated” by the configurations in which the system has energy 〈H〉.

3.3.3 The canonical ensemble at work

Suppose we have a system whose Hamiltonian is:

H =
∑
i

~pi
2

2m
+
∑
i

U(~qi) +
1

2

∑
i 6=j

U2(~qi, ~qj)

(for example, U can be the gravitational potential and U2 an interaction between the particles).
Then the canonical probability density is:

ρ(Q,P) =
1

Z
e−β

∑
i
~pi

2

2m
−β[

∑
i U(~qi)+

1
2

∑
i6=j U2(~qi,~qj)]

Note that Q and P don’t “get mixed up”; therefore, when calculating the partition function Z
we can separate the kinetic and configurational contributions18:

Z =

∫
dΓρ(Q,P) =

N∏
i=1

(
1

N !h3N

∫
e−β

~pi
2

2m d~pi

)
·
∫
e−β[

∑
i U(~qi)+

1
2

∑
i 6=j U2(~qi,~qj)]dQ

Now, since: ∫
e−β

~p2

2md~p =

(
2πm

β

)3/2

18This “separation” was not possible within the microcanonical ensemble and as we will later see (for example
in chapter 5) this will simplify the computations when we will consider non ideal systems, namely if the particles
actually interact; in fact since any reasonable interaction does not involve the particles’ momenta but only their
positions only QN (see below) will be affected by the presence of the interaction.
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we have:

Z =
1

N !

(
2πm

h2β

)3N/2 ∫
e−β[

∑
i U(~qi)+

1
2

∑
i 6=j U2(~qi,~qj)]dQ

In order to simplify this expression, we define the configurational partition function (or configura-
tional sum) as:

QN =

∫
e−β[

∑
i U(~qi)+

1
2

∑
i 6=j U2(~qi,~qj)]dQ

and the thermal wavelength as:

Λ =

√
h2

2πkBTm
=

√
2π~2

kBTm

so that, in general:

Z =
1

N !Λ3N
QN

If we now consider an ideal gas, namely we set U = U2 = 0, then:

QN = V N ⇒ Z =
1

N !

(
V

Λ3

)N
And using Stirling’s approximation (see appendix C) the free energy F = −kBT lnZ of the
system turns out to be:

F = kBTN

[
ln

(
N

V
Λ3

)
− 1

]
Since from thermodynamics we know that P = −∂F/∂V , we get:

P = −kBTN
V

NΛ3

(
− N
V 2

Λ3

)
=
kBTN

V
⇒ PV = NkBT

We have therefore found the state equation of an ideal gas in the canonical ensemble!
We are thus really verifying that the canonical and microcanonical ensembles are equivalent.
For example, we can also compute the entropy of this ideal gas, and we get:

S = −∂F
∂T

= NkB

[
5

2
− ln

(
N

V
Λ3

)]
which is exactly what we have found in the microcanonical ensemble (see equation (3.8)).

Column of gas in a gravitational potential Just as another example of the power of the canon-
ical ensemble, we now want to see that in a particular case we can obtain the same results that
we can determine from simple kinetic considerations. In particular, we want to see how the
density of a gas subjected to a uniform gravitational potential varies with the height from the
ground.

We begin with the “kinetic” computation.
Referring to figure 3.5, consider a column of gas subjected to a constant gravitational potential
mgz, where z is the height from the ground. The action of gravity will in some way change the
density of the particles (we expect that the gas will be more dense near the ground and become
thinner and thinner as z grows) so let us call ρ(z) and P (z) the density and the pressure of the
gas at height z.
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z

Figure 3.5: Column of gas subjected to gravity

Let us call n(z)∆z is the number of particles that are between the heights z and z + ∆z, where
n(z) is the particle number density at height z; these will be subjected to the pressures P (z)
and P (z + ∆z), and if we call Σ the cross section of the column then the net force acting on the
particles is P (z)Σ−P (z+∆z)Σ. Since the system is in equilibrium, this force must be balanced
by the weight of the gas itself:

P (z)Σ− P (z + ∆z)Σ = ρ(z)∆zΣg

Therefore, dividing by Σ and ∆z and taking the limit ∆z → 0:

∂P

∂z
= −ρ(z)g

If we then consider a volume V between z and z + ∆z we have:

P (z)V = N(z)kBT ⇒ P (z) =
N(z)

V
kBT

and since ρ(z) = N(z)m/V = n(z)m, then:

P (z) =
ρ(z)

m
kBT ⇒ ρ(z) =

m

kBT
P (z)

Therefore:
∂P

∂z
= −gρ(z) = − mg

kBT
P (z) ⇒ P (z) = P (0)e

− mg
kBT

z

or equivalently:
n(z) = n(0)e

− mg
kBT

z (3.12)

Thus, the density of the gas decreases exponentially with the height.

We now want to show that the tools of the canonical ensemble allow us to obtain the very same
result. Let us consider the single-particle canonical partition function19:

Zs.p. =

∫
e
−β
(
~p2

2m
+mgz

)
d~pd~q

h3

Since ~q = (x, y, z) is such that (x, y) ∈ Σ and z ∈ [0,+∞], integrating we will have:

Zs.p. =

(
2πmkBT

h2

)3/2 Σ

βmg

19We use the single-particle partition function because in the end we want to find the single-particle configura-
tional probability density.
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The single-particle probability density of having momentum ~p and height z is:

ρs.p.(~p, ~q) =
1

Zs.p.
e
−β
(
~p2

2m
+mgz

)

Therefore we can obtain the spatial probability density integrating over ~p, x and y; in the end
we get:

ρs.p.(z) =
mg

kBT
e
− mg
kBT

z
:= ρs.p.(0)e

− mg
kBT

z

where we have relabelled the proportionality constant. Now, the particle number density at
height z will be n(z) = Nρs.p.(z), so in the end we have:

n(z) = n(0)e
− mg
kBT

z

which is exactly (3.12).

3.3.4 The equipartition theorem

We now want to cover an important topic in statistical mechanics, the equipartition theorem. In
very general words it can be formulated as follows: the mean energy of a particle is equal to kBT/2
times the number of microscopic degrees of freedom.

We now see some examples and then we shall prove the theorem in general.

Real gas Let us begin with a gas with the following Hamiltonian:

H =
∑
i

~pi
2

2m
+
∑
i

U(~qi) +
1

2

∑
i 6=j

U2(~qi, ~qj)

(so it is not necessarily an ideal gas since we are also including the interaction potential U2). Its
phase space probability density is of course:

ρ(Q,P) =
1

Z
e
−β
(∑

i
~pi

2

2m
+
∑
i U(~qi)+

1
2

∑
i6=j U2(~qi,~qj)

)

Then we will have: 〈
~pi

2

2m

〉
=

3

2
kBT

In fact: 〈
~pi

2

2m

〉
=

∫ ~pi
2

2me
−β
(∑

j

~pj
2

2m
+
∑
j U(~qj)+

1
2

∑
j 6=k U2(~qj ,~qk)

)
dQdP∫

e
−β
(∑

j

~pj
2

2m
+
∑
j U(~qj)+

1
2

∑
j 6=k U2(~qj ,~qk)

)
dQdP

and the integrals in Q and P factorize, since there are no terms that mix them. Therefore:〈
~pi

2

2m

〉
=

∫ ~pi
2

2me
−β
∑
j

~pj
2

2m dP∫
e−β

∑
j

~pj
2

2m dP
=

∫ ~pi
2

2me
−β ~pi

2

2m d~pi∫
e−β

~pi
2

2m d~pi

where in the last step we have done the integrals for j 6= i, which are all equal and thus simplify.
Thus, in the end:〈

~pi
2

2m

〉
= − ∂

∂β
ln

(∫
e−β

~p2

2md~p

)
= − ∂

∂β
ln

[(
2πm

β

)3/2
]

=
3

2
kBT

In terms of what we have stated at the beginning in this case the microscopic degrees of free-
dom are three, i.e. the three possible directions of motion.
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Harmonic oscillator in a heat bath Let us now consider a single one-dimensional harmonic
oscillator in a heat bath (the presence of the heat bath justifies the use of the canonical partition
function); in other words we are considering a single particle with Hamiltonian:

H =
p2

2m
+m

ω2

2
q2

The (single-particle) partition function is:

Z =

∫
e
−β
(
p2

2m
+mω2

2
q2

)
dqdp

h
=

1

h

(∫
e−βm

ω2

2
q2
dq

)(∫
e−β

p2

2mdp

)
=

=
1

h

√
2π

βmω2

√
2πm

β
=

1

β~ω

Now, from the expression of the partition function we see that we should have:〈
p2

2m

〉
=

〈
m
ω2

2
q2

〉
= − ∂

∂β
lnZ

However, if we simply derive Z as we have found it we determine
〈
p2/2m+mω2q2/2

〉
, not〈

p2/2m
〉

and
〈
mω2q2/2

〉
singularly. In order to avoid this problem we give a different name

to the parameters β that multiply the kinetic and the configurational parts in the integrals that
define Z, i.e. we set:

Z =
1

h

(∫
e−βm

ω2

2
q2
dq

)(∫
e−β

′ p2
2mdp

)
=

1

~ω
· 1√

ββ′

(and of course in the end we must set β = β′). This way, we have:〈
p2

2m

〉
= − ∂

∂β
lnZ =

1

2
· 1

ββ′
β′ =

1

2β
=
kBT

2

〈
m
ω2

2
q2

〉
= − ∂

∂β′
lnZ =

1

2β′ |β′=β
=
kBT

2

Again, we see that every degree of freedom of the particle (in this case, the translational and
vibrational ones) contributes with kBT/2 to its energy.

We can now move on and prove the equipartition theorem in general.

Theorem (Equipartition). Every term in the Hamiltonian of a system that appears only quadratically
contributes to the total energy with kBT/2. In other words, if we can write the Hamiltonian of the
system in the form:

H(Q,P) = H′ + kx2

where x is any of the variables (Q,P) andH′ is a Hamiltonian that does not depend on x, then:

〈
kx2
〉

=
kBT

2

Proof. The partition function of the system is:

Z =

∫
dΓe−βH =

∫
e−βH

′
dΓx

∫
e−β

′kx2
dx
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q

v(q)

q0

Figure 3.6: Interaction potential

where with dΓx we mean dΓ without dx, and as we have done before we call β′ the parameter
β that multiplies kx2 in order to compute

〈
kx2
〉

more simply.
Therefore:

Z =

√
π

kβ′

∫
e−βH

′
dΓx

From the definition of partition function, then:〈
kx2
〉

=

∫
kx2e−β

′kx2
dx = − ∂

∂β′
lnZ =

1

2β′ |β′=β
=
kBT

2

Therefore, if we have an ideal gas of N particles its energy will be:

E = 〈H〉 =
3

2
NkBT

since every particle contributes to the energy with 3kBT/2. The specific heat at constant volume
of such a system is then CV = ∂E/∂T = 3NkB/2, and if we compute it for a single mole of gas
we will have:

Cm.
V =

3

2
R

where “m.” stands for “molar” and R = NAkB is the gas constant.
On the other hand if we have a gas of N one-dimensional harmonic oscillators then the energy
of the system will be:

E = 〈H〉 = kBT

because this time every particle will contribute with kBT (a kBT/2 for the kinetic part and a
kBT/2 for the potential term), and its molar specific heat at constant volume is Cm.

V = R.

An application of the equipartition theorem: the specific heat of crystals

Now, we could ask if the model of a gas of harmonic oscillators is actually realistic; in other
words, are there cases where a particle can be actually considered a harmonic oscillator?
Let us suppose that the particles of our system are subjected to the potential shown in figure
3.620. Clearly, the equilibrium configurations for the particles will be q = q0; furthermore, if the
temperature of the system is very small the fluctuations of the particles around this equilibrium
will be very small and therefore we can expand the potential around q0:

v(q) = v(q0) + (q − q0)
∂v

∂q |q0
+

1

2
(q − q0)2∂

2v

∂q2
|q0

+ · · ·

20This is the Lennard-Jones potential, which we will cover in some more detail in 6.4.2. It is a very realistic potential
for interatomic interactions.
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Now, since q0 is a global minimum for v we will have ∂v/∂q|q0 = 0, and ∂2v/∂q2
|q0 := k >

0. Therefore, neglecting v(q0) since it is just an additive constant, the potential acting on the
particles will be:

v(q) ∼ k

2
(q − q0)2 :=

mω2

2
(q − q0)2

where in the last step we have renamed the constant k as mω2.
Let us see explicitly that this approximation is good if the system is in contact with a heat bath
whose temperature is low, i.e. that the mean displacement of the particles from q0 is small at
low temperatures.
Setting q0 = 0 for simplicity, we have:

〈
q2
〉

=
2

mω2

〈
m
ω2

2
q2

〉
=

2

mω2
· kBT

2
=
kBT

mω2

and therefore if kBT � mω2 then
〈
q2
〉
≈ 0. This means that for low temperatures the interpar-

ticle potential can actually be approximated with a harmonic one.
However, if this is not the case the mean displacement

〈
q2
〉

from the equilibrium will be large
and the particle will “realize” that the potential is actually different from a parabola.

Now, these facts can be used in order to describe the properties of crystals.
Let us in fact suppose to have a system of N particles with Hamiltonian:

H =
N∑
i=1

~pi
2

2m
+

1

2

∑
i 6=j
V(|~qi − ~qj |)︸ ︷︷ ︸
:=V(Q)

and that the interaction potential V(Q) is like the one in figure 3.6 when considering the dis-
tance between two atoms, and such that the particles of the system have positions ~qi = ~qi

(0) +
δ~qi, where ~qi(0) is the equilibrium position of the i-th particle (analogous to the position q0 in
figure 3.6) and δ~qi is the displacement from it. We also suppose that ~qi(0) are fixed and arranged
in a lattice; this is what normally happens in crystalline solids (like metals).
Therefore, just like we have done before, if we suppose the displacements δ~qi to be small we
can expand V(Q) around the equilibrium positions Q0:

V(Q) = V(Q0) +
∑
i

∑
α

δqiα
∂V
∂qiα |Q0

+
1

2

∑
i,j

∑
α,β

δqiαδqjβ
∂2V

∂qiα∂qjβ |Q0

+ · · ·

where i = 1, . . . , N is the index that labels the particle and α = x, y, z the index that labels
its coordinates. Note that iα and jβ are single indexes (i.e., strictly speaking i and α are not
independent indexes, like j and β).
Since Q0 are the equilibrium positions of the particles, we have:

∂V
∂qiα |Q0

= 0

Furthermore the second derivative of V is a matrix, which we call K:

∂2V
∂qiα∂qjβ |Q0

:= Kiα,jβ

This way, also neglecting the additive constant V(Q0), we can write the interaction potential as:

V(Q) =
1

2

∑
iα,jβ

δqiαKiα,jβδqjβ =
1

2
δQTKδQ (3.13)
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Now, by definition K is a symmetric matrix (remember that we must exchange iα with jβ) and
so it can be diagonalized, namely we can write:

K = STΛS with STS = I, Λ = diag(λ1, . . . , λ3N ), λi > 0

Therefore the Hamiltonian of the system can be rewritten in the form:

H =
∑
i

~pi
2

2m
+

1

2
δQTSTΛSδQ =

1

2m
PT · I · P +

1

2
δQSTΛSδQ

If we now define the new variables:

δQ̂ := SδQ P̂ = SP (3.14)

then:

H =
P̂2

2m
+

1

2
δQ̂TΛδQ̂

or, explicitly:

H =
∑
iα

[
p̂2
iα

2m
+ λiα

δq̂2
iα

2

]
(3.15)

Therefore, with the change of variables (3.14) (called normal modes of vibration) we have rewrit-
ten the Hamiltonian as a sum of 3N decoupled harmonic oscillators.
Note in fact that in (3.13) the positions Q are coupled by the matrix K, which in general is not
diagonal21, while now the new variables are not. Note however that these new variables are
not related to the positions or the momenta of any of the atoms: they are just some generalised
coordinates, which allow us to rewrite the Hamiltonian in a simpler way22.
Thus, since our system is equivalent to a set of 3N harmonic oscillators, its energy will be:

〈H〉 = 3N

(
kBT

2
+
kBT

2

)
= 3NkBT

which is twice the energy of the ideal gas.
Therefore, the model of crystals we are studying predicts a value for the molar specific heat at
constant volume equal to:

Cm.
V = 3R

This is experimentally verified, but only for high temperatures; we will cover this issue in some
more detail in the next section, and as we will see this problem is essentially due to the fact that
for low temperatures quantum effects become relevant.

One last application of the equipartition theorem: CV for biatomic gases

If we apply what we have seen for the equipartition theorem to a biatomic gas, what do we
expect?
In this case the atoms in a molecule can oscillate around their equilibrium positions and the

21The positions and the oscillations of the atoms in a crystal are strongly correlated: when an atom is excited and
oscillates faster it “gives” some of its energy to the nearby atoms increasing their energy of oscillation. If this was
not the case, the crystal would disgregate.

22Note, however, that if our fundamental assumption is not valid, i.e. if the displacements of the atoms from their
equilibrium positions are not small, then also these new variables would be coupled: in this case in fact we couldn’t
have neglected the third derivatives of V , which in the form (3.15) of the Hamiltonian would have been a coupling
term between the δq̂.
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molecules can rotate. Choosing a reference frame where the vector that connects the two atoms
is directed along the z axis, the Hamiltonian of such a system will be:

H =
∑
i

~pi
2

2m
+
∑
i

[(
prel,i

2

2m
+
mω2

2
qrel,i

2

)
+

1

2

(
I1θ̇

2
i1 + I2θ̇

2
i2

)]
where qrel is the relative distance between two atoms in the same molecule and Iα and θiα are,
respectively, the moment of inertia of the molecule and its angle relative to the α-th axis, with
α = x, y (the rotations around the direction that connects the two atoms are ineffective).
Therefore, we expect the energy of the system to be:

〈H〉 = NkBT

(
3

2
+ 2

1

2
+ 2

1

2

)
=

7

2
NkBT

and the molar specific heat at constant volume to be Cm.
V = 7R/2.

However, experimentally we observe something quite different: for low temperatures Cm.
V

turns out to be 3R/2, then at a certain point increasing the temperature Cm.
V jumps to 5R/2,

and then at higher temperatures there is another jump to 7R/2. In other words, “new” degrees
of freedom become “visible” for high enough temperatures (in the case we have mentioned,
increasing T we “see” first the translational degrees of freedom, then the rotational and in the
end the vibrational ones).

This is due to the fact that in reality the molecules are quantum systems and the observed
behaviour of Cm.

V comes from their properties on a quantum level.
To be more explicit: it is a known fact that in quantum mechanics the energy levels of a system
are discrete (for example, for a harmonic oscillator En = (n+ 1/2)~ω); in particular any system
will have a non-null zero-point energy, i.e. the lowest possible energy level, and then all the
possible excited states. If the temperature of the system is low enough it will occupy its lowest
possible energy state; if we then increase T the thermal energy of the system (kBT ) at a certain
point will be large enough to allow the system to pass to the first excited states, and then to the
others.
For example the harmonic oscillator has equally spaced energy levels, with the spacing equal
to ~ω; if the temperature of the system is such that kBT � ~ω the system cannot acquire the
necessary energy to pass to the first excited state (this will be possible as soon as kBT ≈ ~ω).
In the case of the biatomic gas the observed behaviour is due exactly to this mechanism: the
first excited state of the vibrational spectrum has an energy higher to the first excited state of
the rotational spectrum, so increasing the temperature at a certain point we will be able to give
enough energy to the molecules to pass from their ground state to the first rotational excited
state, and similarly when we further increase the temperature we will be able to make them
pass to the first vibrational excited state.

3.4 The grand canonical ensemble

In 3.3 we have relaxed the constraint of having a fixed value of the energy, and thus defined
the canonical ensemble. However, we still supposed that the number of particles of our system
was fixed: we can remove also this constraint, and so consider systems that exchange not only
energy but also particles.
The statistical ensemble of such systems is called grand canonical ensemble.

We therefore consider a system like that shown in figure 3.7: we again have a heat bath at tem-
perature T and a small subsystem that this time can also exchange particles with the bath; let
us call Nb the number of particles of the heat bath, Ns the particles of the subsystem (which
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Ns Nb

T

Figure 3.7: Grand canonical ensemble

can both vary from instant to instant), N = Ns +Nb the total number of particles of the system
(which is instead fixed) and V the total volume.
As we have done for the canonical ensemble, we rely on the tools of the microcanonical ensem-
ble, namely we must determine the phase space volume of the system taking also into account
that the number of particles is not fixed. This volume is:

Ω(E,N, V ) =

N∑
Ns=0

∫
dΓsdΓbδ(Hs +Hb − E)

where E is the total energy of the system, and the sum is taken exactly because the number of
particles in the system is not fixed and in principle can run from zero to the largest possible
value, i.e. N ; furthermore all the quantities with the subscript “s” are relative to the subsystem
while those with “b” to the heat bath, and it is implied that the former are computed for Ns
particles while the latter for N −Ns.
Integrating over dΓb we can write Ω as:

Ω(E,N, V ) =

N∑
Ns=0

∫
dΓsdΓbδ[Hb − (E −Hs)] =

N∑
Ns=0

∫
dΓsΩb(E −Hs, Vb, N −Ns)

If we now divide both sides by Ω(E, V,N):

N∑
N=0

∫
dΓs

Ωb(E −Hs, Vb, N −Ns)

Ω(E, V,N)
= 1

we recognise, in analogy to what we have seen in 3.2, that now the phase space probability
density is:

ρNs(Q,P) =
Ωb(E −Hs, Vb, N −Ns)

Ω(E, V,N)

where the subscript Ns has been added in order to remember that this probability density de-
pends on the number of particles that are in the subsystem, and the normalization condition
requires that we must not only integrate ρ in (Q,P), but also sum over all the possible numbers
of particles.
Now, just like we have done for the canonical ensemble we can use the fundamental postulate
of statistical mechanics to write:

Ωb(E −Hs, Vb, N −Ns) = e
1
kB

Sb(E−Hs,Vb,N−Ns)

and since the subsystem we are considering is again macroscopic but much smaller than the
heat bath we haveHs � E and Ns � N , so we can expand Sb in the exponential:

Ωb(E −Hs, Vb, N −Ns) = e
1
kB

(Sb(E,Vb,N)−H ∂
∂E

Sb(E,Vb,N)−Ns
∂
∂N

Sb(E,Vb,N)+··· )
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From thermodynamics we know that:

∂Sb

∂E
=

1

T

∂Sb

∂N
= −µ

T

where µ is the chemical potential, and in the end we get (removing the subscript “s” to have a
more general notation):

ρN (Q,P) =
e−β(H(Q,P)−µN)∑

N

∫
dΓe−β(H(Q,P)−µN)

where:
Z =

∑
N

∫
dΓe−β(H(Q,P)−µN) (3.16)

is called grand partition function.

Just like we have done for the canonical ensemble, we could wonder what relations does this
newly found ensemble have with the ones that we already know, in particular the canonical
one; what we are now going to show is that they are equivalent when the system considered
is macroscopic, since this time the (relative) fluctuations of the number of particles will be
incredibly small.

3.4.1 Fluctuations in the grand canonical ensemble

As we have anticipated we expect that, similarly to what happens in the canonical ensemble,
the fluctuations of the energy and number of particles around their mean values vanish in the
thermodynamic limit so that the grand canonical ensemble is indeed equivalent to the canoni-
cal one.

The fluctuations of the energy around 〈H〉 are computed exactly in the same way as we have
done in 3.3.1, and we get to the same result.
We therefore now focus on the fluctuations of the number of particles around 〈N〉:

σ2
N =

〈
N2
〉
− 〈N〉2 =

1

β2

∂2 lnZ
∂µ2

=
1

β2

∂2

∂µ2
[−βΦ(T, V, µ)]

where we have used the fact that lnZ = −βΦ (with Φ the grand potential), which will be shown
in 3.4.2.
Now, from the definition Φ = E − TS(E, V,N)− µN of grand potential we have (considering
that ∂S/∂V = P/T and that, again, there are some derivatives that vanish because E and N
define a minimum) that:

∂Φ

∂V
= −P

Furthermore, Φ is extensive:
Φ(T, λV, µ) = λΦ(T, V, µ)

and setting λ = 1/V we get Φ(T, V, µ) = V Φ(T, 1, µ): the grand potential is proportional to the
volume.
Therefore, ∂Φ(T, V, µ)/∂V = Φ(T, 1, µ) = −P and so:

Φ(T, V, µ) = V Φ(T, 1, µ) = −V P

Thus:

σ2
N = − 1

β

∂2

∂µ2
Φ(T, V, µ) =

V

β

∂2

∂µ2
P (T, µ)
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We must therefore find a way to express ∂2P/∂µ2.
We define v(T, µ) = V/N and f(T, v) = F/N , and then write:

∂P

∂µ
=
∂P/∂v

∂µ/∂v
(3.17)

Since Φ = −PV = F − µN , we have:

fN − µN = −PV ⇒ f(T, v) = µ− vP (T, µ)

and since:
P = −∂F

∂V
= −∂f

∂v

then:
f(T, v) = µ+ v

∂f

∂v
⇒ µ = f − v∂f

∂v

We therefore have:
∂P

∂v
= −∂

2f

∂v2

∂µ

∂v
= −v∂

2f

∂v2
(3.18)

and substituting in (3.17), this leads to:

∂P

∂µ
=

1

v

If we now further derive P with respect to µ:

∂2P

∂µ2
= − 1

v2

∂v

∂µ
= − 1

v2

1

∂µ/∂v

and from (3.18) we have:
∂µ

∂v
= −v∂

2f

∂v2
= v

∂P

∂v

so that:
∂2P

∂µ2
= − 1

v2
· 1

v · ∂P/∂v
= −

(
v3∂P

∂v

)−1

We have done all these intricate computations because now we can use the definition of isother-
mal compressibility (see 1.1.5)23:

KT = − 1

V

∂V

∂P
= − 1

V

1

∂P/∂V

(which as we can see is an intensive quantity) to write:

∂2P

∂µ2
=
KT

v2

This way the variance of the number of particles can be written as:

σ2
N =

V

β
· ∂

2P

∂µ2
=
V

β
· KT

v2
= N

KT

βv

(which is of course positive since KT > 0).
We therefore see that:

σ2
N ∝ N ⇒ σN ∝

√
N

23This is of course equal to what we have found, because v = V/N .
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and so the relative fluctuation of the number of particles is:

σN
N
∝ 1√

N

which is a result analogous to what we have seen for the energy.

Therefore, as we expected, the fluctuations of the number of particles of a system in the grand
canonical ensemble are negligible in the thermodynamic limit; this ultimately means that the
grand canonical ensemble is equivalent to the canonical one.

3.4.2 Grand potential

Similarly to what we have done for the canonical ensemble in 3.3.2, we now want to show how
we can derive the thermodynamics of the system from the grand canonical ensemble. In par-
ticular we want to show that Z can be expressed in terms of the grand potential Φ (see 1.1.3), i.e.
Z = e−βΦ.

From the definition of the grand partition function, using the “trick” of inserting a
∫
dEδ(H −

E), which is of course equal to one, we get:

Z =
∑
N

∫
dΓdEe−β(H−µN)δ(H− E) =

∑
N

∫
dEe−β(E−µN)Ω(E, V,N)

and using the fundamental postulate of statistical mechanics:

Z =
∑
N

∫
dEe−β(E−TS−µN) =

∑
N

∫
dEe−β(F−µN)

where F = E − TS is the free energy of the system.
Now, F is extensive and so we can use the saddle point approximation (see appendix B) in
order to compute the integral; we therefore must find when the integrand is maximized, i.e.
when F − µN is minimized.
Since for macroscopic systems N is extremely large we can treat it as a continuous function,
and so the minima of the exponent are determined by the conditions24:

∂

∂E
(E − TS − µN)|E,N = 0

∂

∂N
(E − TS − µN)|E,N = 0

where E and N are the values of E and N that extremize F − µN . We therefore have:

1− T ∂S
∂E |E,N

= 0

(
−T ∂S

∂N
− µ

)
|E,N

= 0

namely:
∂S

∂E |E,N
=

1

T

∂S

∂N |E,N
= −µ

T

These two equations allow us to determine E and N once T and µ are known.
Therefore, we can approximate:

Z = e−β(E−TS(E,V,N)−µN)

24We don’t verify that the Hessian is definite positive in the extrema that we have found because the computations
are long and tedious.
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since, similarly to what seen in 3.3.2, all the other terms in the exponential vanish in the ther-
modynamic limit. Therefore we see that:

−kBT lnZ = E − TS(E, V,N)− µN

namely the exponent of the grand partition function is a Legendre transformation of the same
exponent of the partition function in the canonical ensemble with respect to the number of par-
ticles N ; furthermore, we have that this exponent is really the grand potential Φ if E = 〈H〉 and
N = 〈N〉. We now want to show that this is indeed the case.

From the definition (3.16) of the grand partition function, we have:

〈N〉 =
1

β

∂ lnZ
∂µ

=
∂

∂µ
(kBT lnZ) = − ∂

∂µ

(
E − TS(E, V,N)− µN

)
=

= N +
∂E

∂µ

∂

∂E
(E − TS(E, V,N)− µN)|E,N︸ ︷︷ ︸

=0

+
∂N

∂µ

∂

∂N
(E − TS(E, V,N)− µN)|E,N︸ ︷︷ ︸

=0

However, the two derivatives are null because E and N are by definition minima of F − µN .
Therefore:

〈N〉 = N

Now, again from the definition of Z we have:

〈H − µN〉 = −∂ lnZ
∂β

=
∂

∂β

[
β(E − TS(E, V,N)− µN)

]
=

= E − µN +
∂E

∂β

∂

∂E
(E − TS(E, V,N)− µN)|E,N︸ ︷︷ ︸

=0

+
∂N

∂β

∂

∂N
(E − TS(E, V,N)− µN)|E,N︸ ︷︷ ︸

=0

where the derivatives vanish again for the same reason. Therefore:

〈H − µN〉 = E − µN

and since N = 〈N〉 and of course 〈H − µN〉 = 〈H〉 − µ 〈N〉, we have:

〈H〉 = E

Therefore, we indeed have:
Z = e−βΦ

and we see that also in the grand canonical ensemble the partition function is largely dominated
by the configurations of the system where the energy is 〈H〉 and the number of particles is 〈N〉.



Chapter 4

Entropy and its meanings

We now stop to analyse in more detail one of the most important and nonetheless mysterious
concepts that emerge within thermodynamics and statistical mechanics, and the one that had
the greatest impact in all the other fields of physics: entropy.

With the development of the ensemble theory entropy has gained a new meaning beyond the
(not really intuitive) one that it used to have in thermodynamics, namely a “measure” of the
irreversibility of a process; in particular with the introduction of the fundamental postulate
of statistical mechanics we can interpret entropy as a “measure” of the possible states that a
system can assume.
However, entropy goes much further than that and can be interpreted in many other ways.
The aim of this chapter, after briefly recalling the first interpretation of entropy given within
the field of thermodynamics and how it was achieved, is to introduce these other possible
interpretations and to understand them.

4.1 Entropy as irreversibility

4.1.1 Heat engines and entropy

Historically the concept of entropy was introduced in 19th century within thermodynamics
from the study of thermodynamic processes. In particular the properties of reversible and irre-
versible transformations were analysed with the aim of applying the results to the construction
of steam engines. It was realized by Carnot that the way to create the most efficient heat engine
(namely a machine that can turn heat into mechanical work) was to avoid irreversibility.
In particular Carnot considered an engine made of a piston with external pressure P containing

V

P

b

c

a

d

Q1

Q2

Figure 4.1: Carnot cycle
(isotherms are shown in blue while adiabatic transformations in red)
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a monoatomic ideal gas, working between two heat reservoirs at temperatures T1 > T2. Since
it must work between two different temperatures the engine must realize at least two isother-
mal transformations; since isotherms in (V, P ) plane are represented by hyperbolae, in order
to make a closed cycle we must also use two different transformations, for example adiabatic
ones. Such a thermodynamic cycle is also called a Carnot cycle and is shown in figure 4.1. It
works this way:

1. a→ b: first, the gas is put in thermal contact with the hot reservoir (the one at temperature
T1) and isothermally expanded so that it absorbs heat Q1

2. b→ c: the thermal contact is then removed and the gas is further expanded (adiabatically)
until it reaches temperature T2

3. c→ d: the gas is then put in contact with the cold reservoir and isothermally compressed,
releasing heat Q2

4. d → a the thermal contact is then removed and the gas is adiabatically compressed until
it reaches temperature T1

Carnot then managed to show that a heat engine working with such a cycle is the most efficient
possible one.
Let us also remember that according to possible different conventions the heat absorbed or re-
leased by a system or the work done by or on a system can be negative or positive; we will
consider positive the heat released by a system (and therefore negative the heat absorbed).

Now, from the conservation of energy we can arrive to the thermodynamic definition of en-
tropy. Consider in fact the first part of the cycle, the isotherm a → b: in this process we add
heat Q1 to the system, which is equal to:

Q1 = Wa→b =

∫ b

a
PdV = NkBT1 ln

Vb
Va

Similarly, in c→ d we release heat Q2, which is:

Q2 = −Wc→d = NkBT2 ln
Vc
Vd

Along the adiabatic curves, on the other hand, we have dE = −dW = −PdV = −NkBTdV/V
and also dE = 3

2NkBdT , so that along b→ c and d→ a we have:

3

2

dT

T
= −dV

V
⇒

(
T1

T2

)3/2

=
Vc
Vb

=
Vd
Va

⇒ Vc
Vd

=
Vb
Va

and thus we have:
Q1

T1
= NkB ln

Vb
Va

= NkB ln
Vc
Vd

=
Q2

T2

Therefore, for Carnot engines we have:

Q1

T1
=
Q2

T2
(4.1)

or in other words the quantity Q/T is constant. This quantity is what has been defined as
entropy S, or better since Q is a variation of energy Q/T is a variation of entropy:

∆S :=
Q

T



4.1. ENTROPY AS IRREVERSIBILITY 73

Let us note that if we consider a reversible engine, the total variation of entropy for the system
composed of the engine and the two reservoirs is null. In fact, this total variation of entropy is:

∆S = ∆Seng. + ∆S1 + ∆S2

where ∆Seng. = 0 since the engine does a cyclic transformation (which means that final and ini-
tial states coincide), ∆S1 = −Q1/T1 and ∆S2 = Q2/T2; remember that Q1 is the heat absorbed
by the hot reservoir so it is negative in our conventions (because it releases heat to the engine).
Since (4.1) holds, this means that ∆S1 + ∆S2 = 0: thus ∆S = 0. Therefore the total entropy of
a system is such that it remains constant in reversible transformations.
Now, what happens if we let the engine be non reversible? In this case the machine in one cycle
absorbs heat Q1 + δ and releases Q2 + δ, with δ > 0 a small heat leak, and therefore we have:

∆S1 + ∆S2 = −Q1 + δ

T1
+
Q2 + δ

T2
= δ ·

(
1

T2
− 1

T1

)
> 0

and so in irreversible processes the total entropy increases.

Therefore, entropy can be considered a “measure” of the irreversibility of a process.
This is what has led physicists to introduce the second principle of thermodynamics which
states that the entropy of a system never decreases, namely remains constant only for reversible
processes and always increases for irreversible ones.

4.1.2 Time and entropy

We conclude by noting that the irreversible increase in entropy is something that emerges only
when considering macroscopic systems. In fact, if we look at a system from a microscopic point
of view its properties are perfectly invariant under time reversal. More formally, if (Q,P) is the
representative point of our system in phase space we know that solving Hamilton’s equations
for the Hamiltonian H of the system gives us the motion (Q(t),P(t)) of this point; however if
(Q(t),P(t)) is a solution of Hamilton’s equations so is (Q(−t),P(−t))1: in other words if we
have a solution of Hamilton’s equations and we reverse time we obtain another valid solution
and so another physically possible evolution for the system2.

However, this time-reversal invariance does not hold any more if we consider macroscopic
systems. For example, consider the two following processes:

1. the equilibration of a cold and a hot body into two bodies with the same temperature

2. the adiabatic expansion of a gas: a box is divided by a wall into two halves of volume V ,
one completely empty and one containing a gas of N particles and energy E; opening a
hole in the wall the gas will spontaneously fill all the volume of the box. This is clearly an
irreversible process so the entropy of the system increases (while the energy of the gas,
and thus its temperature, does not change)3

1This is true in all physical cases. One can always find “pathological” Hamiltonians for which this is not true,
but generally they have no physical significance; of course we are thinking about classical systems, otherwise we
can easily find systems which are not time-reversal invariant (as known, the laws of particle physics are invariant
only under CPT ).

2“Visually”, we can think to watch a video representing the motion of the particles of our system: if we rewind
it we obtain another possible microscopic evolution of the system.

3We can also see this from the microcanonical definition of entropy. In fact the phase space volume of the system
in the two cases is:

Ω(V ) =

∫
V

dQ
∫
R3N

dPδ(E −H) Ω(2V ) =

∫
2V

dQ
∫
R3N

dPδ(E −H)

and since the integrand is always positive and the domain of integration in configuration space is larger after the
adiabatic expansion, we indeed have Ω(2V ) > Ω(V ) and so the entropy increases in the process.
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(a) Unmixed state (b) Mixed state

Figure 4.2: Mixing of two gases

It is clear that they will never occur spontaneously in reverse, and that in order to do so we
must do some kind of work on the system: two bodies in thermal contact at the same tem-
perature will never spontaneously undergo a transformation at the end of which they will
have two different temperatures (we must use some mechanical work to transfer heat), or a gas
contained in a box will never fill on its own only one half of the volume (we must compress it)4.

Therefore, entropy seen as a “measure” of irreversibility is what gives us the definition of the
arrow of time, namely it allows us to distinguish past from future.
We will cover the relationship between entropy and time in more detail in 4.4.

4.2 Entropy as disorder

Entropy is often referred to as the “measure of the disorder” of a system; we now want to
exploit this aspect.

4.2.1 Mixing of gases

The most simple example of a system where entropy can be regarded as a “measure of disor-
der” is the mixing of two gases, which we have already encountered in 3.2.3. Nonetheless, we
now shortly re-analyse the problem from a slightly different perspective.
Consider a system divided into two subsystem with the same characteristics, namely both have
volume V/2 and contain N/2 particles of total energy E (see figure 4.2). If the gases contained
in the two subsystems are different then the total phase space volume of the whole system in
the unmixed state will be Ω(E, V/2, N/2) · Ω(E, V/2, N/2), and thus its entropy:

Sun. = 2kB ln Ω

(
E,

V

2
,
N

2

)
= 2kB ln

[
(V/2)N/2

(N/2)!

]
+ 2kB ln Ω̃

(
E,

N

2

)

where we have called Ω̃(E,N/2) the kinetic part of the phase space volume (which as we will
shortly see is irrelevant for our purposes here).
If we now remove the wall that separates the two gases the system undergoes an irreversible
transformation at the end of which the entropy will be:

Smix. = 2kB ln Ω

(
E, V,

N

2

)
= 2kB ln

[
V N/2

(N/2)!

]
+ 2kB ln Ω̃

(
E,

N

2

)
(where the kinetic part is left unchanged). Therefore, the variation of entropy in the process is:

∆S = Smix. − Sun. = 2kB ln 2N/2 = NkB ln 2 (4.2)

4“Visually”, as before, this means that if we are watching a video of the evolution of a macroscopic system we
can always tell if the video is being rewinded or not.
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We can also interpret this result as follows: every time we place an atom into one of the two
halves without looking which one we choose we gain kB ln 2 in entropy. From this we could
define a “counting entropy”, for systems with a discrete number Nconf. of equally-likely config-
urations5:

Scount. := kB lnNconf.

Therefore, when the gases mix the entropy of the system increases: this reflects the fact that
now the system has a larger accessible volume in phase space, which can be interpreted as the
fact that the system is more “disordered”.
Let us briefly note some facts that connect to the next section: in very intuitive words, by re-
moving the wall we have increased our “ignorance” on the system. In fact in the initial state
we had the certainty that (we still refer to figure 4.2) “black” atoms were in the left half of the
system and “red” atoms in the right one, while removing the wall we don’t have this certainty
any more. We have therefore lost information and gained entropy; however, since ∆S · T has
the dimension of an energy this means that we have more available energy, with which we
could do some work. Therefore, going from “low ignorance” to “high ignorance” states we can
generate work6.

If we now consider the case where the two gases are identical we know (as we have seen, even if
from a different point of view, in 3.2.3) that the entropy must not increase, otherwise we would
break the second principle of thermodynamics. In fact, if the entropy of the system increased
if we removed the wall, inserting a new one would reduce the entropy of the whole system:
this way by inserting an arbitrary amount of walls we can arbitrarily reduce the entropy of the
system and therefore we would be able to generate an arbitrary amount of work from nothing;
this clearly violates the principles of thermodynamics.
This time the entropy of the mixed state is:

Smix. = kB ln
V N

N !
+ 2kB ln Ω̃

(
E,

N

2

)
and therefore the variation of entropy is (using Stirling’s approximation, see appendix C):

∆S

kB
= N lnV −N lnN +N +O(lnN)− 2 ln

(
V

2

)N/2
+ 2

N

2
ln
N

2
− 2

N

2
+O(lnN) = O(lnN)

Therefore, the total variation of entropy is negligible but not properly zero7 also in the thermo-
dynamic limit (however, the variation of entropy per particle is null in the same limit). This is
due to the fact that before removing the wall the number of particles in the two halves of the
system is fixed and therefore doesn’t fluctuate, while after removing it we know (see 3.2) that
there are some little fluctuations; thus, if we reinsert the wall we will never recover the exact
initial state but there will always be some particles in excess in one of the two halves. This is
why the entropy of the system increases, even if by a perfectly negligible amount.

5Such systems arise often; a couple of examples are quantum systems (where energy states are discrete) and
information theory (where every bit of a message can be found in one of two possible “states”, 0 and 1).

6A tangible example of how this can be possible is given by semi-permeable membranes and ion pumps. The
enzyme Na+/K+-ATPase (also known as sodium-potassium pump) is located on the membrane of almost every cell
of our bodies, and burns ATP to maintain concentration gradients of potassium and sodium ions between a cell
and its surroundings: this enzyme, therefore, does work in order to re-establish the “information” (the spatial
concentration of ions) that otherwise would be lost. On the other hand semi-permeable membranes are permeable
only by some particular kinds of particle and generally only in one direction; for example, suppose that the wall
in figure 4.2a is a semi-permeable wall that allows only the red atoms to pass to the left: this way, there will be
more particles in the left half of the system than in the right one, and therefore the right half of the system will be
subjected to a pressure, the so called osmotic pressure (in fact, since V and T remain constant during the process,
from the ideal gas law we see that the pressure must increase). In other words, the semi-permeable wall destroys
the initial information and generates work.

7In 3.2.3 we neglected the term O(lnN) using Stirling’s approximation, and that’s why we found ∆S to be
exactly zero.
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4.3 Entropy as ignorance: information entropy

We now proceed to analyse the most general interpretation that can be given of entropy: a
“measure” of our “ignorance” about a system.
In fact, all the previous interpretations of entropy can be connected to this one: a system in
equilibrium maximizes its entropy because we have lost all the information about the initial
conditions except for the conserved quantities; therefore maximizing the entropy means max-
imizing our ignorance about the details of the system. On the other hand the entropy of a
mixture of different gases is a measure of the number of the possible configurations of the sys-
tem, given our ignorance about it.

Therefore, entropy can be regarded as a property not of the system but of our ignorance about
the system itself, represented by the ensemble of its possible configurations8.
We have also always restricted ourselves to systems where our ignorance is maximal, namely
where all the allowed configurations are equally probable; but what about systems where we
have partial information and some configurations are more probable than others? As we will
now see the definition of entropy can be generalized to general probability distributions and
finds applications in many other fields of physics and science.

In the microcanonical ensemble we have seen that the number of allowed states for a system of
energy E is the volume Ω(E) in phase space of the hypersurface of constant energy E, and that
the phase space probability density is ρ = 1/Ω(E) on this surface. From this we have defined
the entropy as S = kB ln Ω(E) = −kB ln ρ; formally we can write9:

S

kB
= −

Ω(E)∑
i=1

ρ ln ρ = −〈ln ρ〉 (4.3)

We could therefore argue that if a system is described by a general phase space probability
density ρ(Q,P) (which can also describe the system out of equilibrium, so in general ρ can
explicitly depend on time) its entropy can be defined as:

S = −kB 〈ln ρ〉 = −kB
∫

dΓ

h3NN !
ρ(Q,P) ln ρ(Q,P) (4.4)

(where we are implicitly assuming that ρ has been adimensionalized so that ln ρ makes sense).
We can immediately see that we recover the original definition of entropy in the microcanonical
ensemble by substituting ρ = const. = 1/Ω(E):

S = kB

∫
dΓ

h3NN !

ln Ω(E)

Ω(E)
= kB

ln Ω(E)

Ω(E)

∫
dΓ

h3NN !︸ ︷︷ ︸
Ω(E)

= kB ln Ω(E)

4.3.1 Shannon’s entropy

From (4.3) and (4.4) we can introduce a more general definition of entropy for a generic system
that can be found in Ω different discrete states10, each with probability pi (and i = 1, . . . ,Ω).

8Note that entropy can be indeed regarded as a measure of ignorance or equivalently information, but it does
not distinguish the utility of that information. In other words, having a lot of information from the point of view of
entropy does not mean we have useful information about a system.

9As we will see in 4.5, this definition of entropy allows to derive in a systematic way the canonical and grand
canonical ensembles from the microcanonical one.

10The Ω we are using here does not necessarily refer to the phase space volume, it’s just a notation for the number
of possible states.
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This is known as Shannon’s entropy, which is defined as:

SS = −kS 〈ln pi〉 = −kS
Ω∑
i=1

pi ln pi (4.5)

the constant kS is used instead of Boltzmann’s constant because in general the connection to
temperature can be irrelevant, and it is defined as kS = 1/ ln 2 so that Shannon’s entropy can
be also rewritten as:

SS = −
Ω∑
i=1

pi log2 pi

The unit of measure of this entropy is the bit.
Shannon’s entropy is particularly useful because it is the only one that satisfies three important
properties, which we now show.

Theorem 4.1. Let p1, . . . , pΩ be a set of stochastic variables (they are probabilities, therefore such that
pi ≥ 0 and

∑
i pi = 1). Then Shannon’s entropy S (which is a function of this set of variables) as defined

in (4.5) satisfies the following properties:

0. It is a continuous function

1. S(p1, . . . , pΩ) is maximized when all the pi-s are uniform:

S(pi, . . . , pΩ) < S

(
1

Ω
, . . . ,

1

Ω

)
2. S is not affected by extra states of zero probability:

S(p1, . . . , pΩ, 0) = S(p1, . . . , pΩ)

(where on the left side S has Ω + 1 arguments)

3. S changes for conditional probabilities.
Let A = {Ai} and B = {Bk} be two sets of events (with i = 1, . . . ,Ω and k = 1, . . . ,M ), each
with probability pi = p(Ai) and qk = p(Bk). If we define:

rik = p(AiBk) cik = p(Ai|Bk) =
p(AiBk)

p(Bk)
=
rik
qk

which, by definition, satisfy:

Ω∑
i=1

cik = 1

Ω∑
i=1

M∑
k=1

rik = 1

then we can introduce:

S(AB) = −kS
∑
i,k

rik ln rik S(B) = −kS
M∑
k=1

qk ln qk

S(A|B`) = −kS
Ω∑
i=1

ci` ln ci`

which are, respectively, the total entropy associated to the occurrence of events A and B, the
entropy associated to the occurrence of events B and the entropy associated to the occurrence of
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events A given B`.
Therefore, defining:

〈S(A|B`)〉 =
∑
`

q`S(A|B`) = −kS
∑
i,`

q`ci` ln ci`

we have that S satisfies:
〈S(A|B`)〉 = S(AB)− S(B)

Proof.

0. It is immediate from its definition.

1. First of all, let us note that the function f(x) := −x lnx is concave since f ′′(x) = −1/x
(and in our case x ≥ 0 since it represents a probability).
In general, from the definition of concave function we have:

f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b) λ < 1 (4.6)

From this we can prove by induction that:

f

(
1

Ω

Ω∑
i=1

pi

)
≥

Ω∑
i=1

1

Ω
f(pi)

This is surely true for Ω = 2:

f

(
p1 + p2

2

)
≥ 1

2
(f(p1) + f(p2))

since it follows directly from (4.6) with p1 = a, p2 = b and λ = 1/2. If we now suppose
that the inequality holds for Ω− 1 probabilities:

f

(
1

Ω− 1

Ω−1∑
i=1

pi

)
≥ 1

Ω− 1

Ω−1∑
i=1

f(pi)

it follows that it holds also for Ω. In fact:

f

(
1

Ω

Ω∑
i=1

pi

)
= f

(
Ω− 1

Ω

1

Ω− 1

Ω−1∑
i=1

pi +
pΩ

Ω

)
and choosing (Ω− 1)/Ω = λ:

f

(
1

Ω

Ω∑
i=1

pi

)
≥ Ω− 1

Ω
f

(
1

Ω− 1

Ω−1∑
i=1

pi

)
+

1

Ω
f(pΩ) ≥ Ω− 1

Ω

1

Ω− 1

Ω−1∑
i=1

f(pi) +
1

Ω
f(pΩ)

Therefore:

f

(
1

Ω

Ω∑
i=1

pi

)
≥ 1

Ω

Ω∑
i=1

f(pi)

Now, considering the case f(x) = −x lnx we will have that:

S(p1, . . . , pΩ) = kS

Ω∑
i=1

f(pi) = kSΩ
1

Ω

Ω∑
i=1

f(pi) < kSΩf

(
1

Ω

Ω∑
i=1

pi

)
=

= kSΩf

(
1

Ω

)
= −kS

Ω∑
i=1

1

Ω
ln

1

Ω
= S

(
1

Ω
, . . . ,

1

Ω

)
where the inequality is strict because in this case f ′′(x) < 0 .
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2. This follows immediately from the fact that f(x) can be continuously extended in x = 0,
so that f(0) = 0 (as we have previously stated). Therefore if we add pΩ+1 = 0 to S, it will
not contribute to S since by definition pΩ+1 ln pΩ+1 = 0.

3. Since rik = qkcik, we have:

S(AB) = −kS
∑
i,k

qkcik ln(qkcik) = −kS
∑
i,k

qkcik(ln qk + ln cik) =

= −kS

∑
i,k

qkcik ln qk +
∑
i,k

qkcik ln cik


However: ∑

i,k

qkcik ln qk =
∑
k

qk ln qk
∑
i

cik =
∑
k

qk ln qk

and therefore:

S(AB) = −kS
∑
k

qk ln qk − kS
∑
i,k

qkcik ln cik = S(B) + 〈S(A|Bk)〉

from which we have immediately:

〈S(A|Bk)〉 = S(AB)− S(B)

Let us note an interesting consequence of the last property of the entropy: if we suppose Ai
and Bk to be independent then S(A|B`) = S(A) and we get S(AB) = S(A) + S(B): we have
thus found that entropy is extensive! Therefore, the last property of S is a generalization of the
extensivity of the entropy for correlated events.

Now, since these properties are a little bit obscure as we have stated them, let us make a simple
example to illustrate their meaning. To make things more comprehensible, we use the same
notation of the proof.
Suppose you have lost your house keys, and want to find them; you can measure your progress
in finding them by measuring your ignorance with some function11 S. Suppose there are Ω
possible places Ai where you have might left the keys, each one with an estimated probability
pi; the three properties of the entropy S can thus be interpreted as follows:

1. without further information, your ignorance is maximal and the keys could be in any of
the possible places, each with the same probability

2. if there is no possibility that the keys might be in a particular place AΩ (your shoe, for
example), then your ignorance is no larger than what it would have been if you had not
included that place in the list of possible sites

3. to improve the research, you are likely to look where you have last seen the keys; let us
call these M places Bk, each with probability qk that the keys are indeed there.
Before thinking where you have last seen the keys, your ignorance about their location
is S(A) = S(p1, . . . , pΩ) and the one about where you have last seen them is S(B) =
S(qi, . . . , qM ); therefore you also have the joint ignorance S(AB). If the location where
you last seen them is B` then your ignorance about the location of the keys is S(A|B`),

11Since it is the measure of your ignorance, this function is exactly the information entropy we have considered.
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and so your combined ignorance has reduced from S(AB) to S(A|B`).
You can now measure the usefulness of your guess by determining how much it will
reduce your ignorance about where the keys are: the expected ignorance after you have
guessed where the keys might have been is given by weighting the ignorance after each
guess B` by the probability of that guess, namely it is 〈S(A|B`)〉. The last property of the
entropy thus states that after a guess your expected ignorance decreases exactly by the
amount S(B).

Now, what makes Shannon’s entropy as defined in (4.3) so special is the fact that it is unique (of
course up to a proportionality constant) and this follows only by the properties that we have
just shown it satisfies.

Theorem. Shannon’s entropy, defined as:

SS = −kS
∑
i

pi ln pi

and satisfying the properties shown in theorem 4.1, is unique up to a normalization constant. In other
words, the properties shown in theorem 4.1 uniquely identify Shannon’s entropy.

The idea of the proof is the following: we prove that from those properties we have that SS =
S(~p) has indeed the expression of Shannon’s entropy when12 pi ∈ Q+. Then, since S is a
continuous function (property 0 of theorem 4.1) we have that S(~p) has the same expression
also for pi ∈ R+.
Proof. Let us take ~q ∈ QΩ, and we write its components as q` = g`/g with g, g` ∈ N (and g the
least common multiple of the g`-s). We suppose rk` = 1/g, so that ck` = rk`/q` = 1/g` (and
k = 1, . . . , g`). Defining L(g) = SS(1/g, . . . , 1/g), we have:

SS(AB) = SS(r11, r12, . . . , rΩM ) = L(g) SS(A|B) =

M∑
`=1

q`SS(c1`, . . . , cΩ`) =
∑
`

q`L(g`)

From the third property of SS we have:

SS(AB) = SS(A|B) + SS(B) ⇒ L(g) =
∑
`

q`L(g`) + SS(q1, . . . , qM ) ⇒

⇒ SS(q1, . . . , qM ) = L(g)−
∑
`

q`L(g`) (4.7)

Therefore, if we know L(g) we can express SS (when its arguments are rational, for now).
Let us see that from (4.7) we get the expression of Shannon’s entropy if L(g) = k ln g, with k a
generic constant:

SS(q1, . . . , qM ) = L(g)−
∑
`

q`L(g`) = k ln g − k
∑
`

q` ln g` =

= k
∑
`

q`(ln g − ln g`) = −k
∑
`

q` ln
g`
g

= −k
∑
`

q` ln q`

which is exactly Shannon’s entropy. We therefore must prove that L(g) = k ln g, and in order
to do that we will use the first and second properties of SS .
Let us call a and b two integers such that a < b; then from the second property we have:

SS

1

a
, . . . ,

1

a︸ ︷︷ ︸
a arg.

 = SS

1

a
, . . . ,

1

a︸ ︷︷ ︸
a arg.

, 0, . . . , 0︸ ︷︷ ︸
b−a arg.


12Note: only for this proof the symbol Q will be used in its usual meaning, namely the set of rational numbers.
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and from the first:

SS

1

a
, . . . ,

1

a︸ ︷︷ ︸
a arg.

, 0, . . . , 0︸ ︷︷ ︸
b−a arg.

 < SS

1

b
, . . . ,

1

b︸ ︷︷ ︸
b arg.

 ⇒ SS(1/a, . . . , 1/a) < SS(1/b, . . . , 1/b)

so if a < b then L(a) < L(b).
Let now C(1), C(2), . . . , C(n) be n classes containing each g independent events with uniform
probability; if we call A the set of g events in C(1) and B all the gn−1 remaining ones, from the
third property of SS we have:

SS(AB) = SS(A) + SS(B) ⇒ L(gn) = L(g) + L(gn−1)

we thus have found a recursive formula for L(gn); applying it n times we get:

L(gn) = L(g) + L(g) + · · ·+ L(g)︸ ︷︷ ︸
n times

+L(1) = nL(g) + L(1)

and we set13 L(1) = 0. Therefore, L(gn) = nL(g).
Let us now take s ∈ N; there will surely be an m ∈ N for which:

2m ≤ sn < 2m+1

so (this can be done because L(a) < L(b) if a < b):

L(2m) ≤ L(sn) < L(2m+1) ⇒ mL(2) ≤ nL(s) < (m+ 1)L(2) ⇒

⇒ m

n
≤ L(s)

L(2)
<
m+ 1

n

Now, the logarithm ln is a monotonically increasing function so if a < b then ln a < ln b; there-
fore we find that a similar inequality holds also for the logarithm:

m

n
≤ ln s

ln 2
<
m+ 1

n

This means that L(s)/L(2) and ln s/ ln 2 both belong to the interval [m/n, (m + 1)/n], whose
width is 1/n. Thus: ∣∣∣∣ ln sln 2

− L(s)

L(2)

∣∣∣∣ < 1

n

and taking the limit n → ∞ (in fact n is arbitrary, so the inequality must hold for all ns) we
obtain:

L(s) =
L(2)

ln 2
ln s

and renaming L(2)/ ln 2 as k, we get:

L(g) = k ln g

which is exactly what we wanted to prove.

Therefore, we see that the Shannon’s entropy is uniquely determined by the properties shown
in theorem 4.1.

13This is the entropy of a system with only one allowed configurations, so it is null; we could also have kept it
but it cancels out in the computations so it is anyway irrelevant.
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4.3.2 Conclusions: the most general definition of entropy

Therefore, from what we have seen the most general definition of entropy that can be given
is the following: if the possible states of a system are described by a probability distribution ρ
(note that we are not assuming anything on the nature of ρ, namely it can be both a continuous
or discrete probability density) then the entropy S of the system is defined as:

S = −k 〈ln ρ〉 = −kTr(ρ ln ρ) (4.8)

where k can be kB or kS (depending on the kind of system considered) and the trace Tr is a
general way, which we will often use in the future, to write the sum (intended as an effective
sum or an integration, in case ρ is continuous) over all the degrees of freedom of the system.
In other words Tr is a symbolic notation that includes both the cases where ρ is continuous or
discrete:

Tr(ρ ln ρ) =

{∑
i ρi ln ρi if ρ is discrete∫
dΓρ ln ρ if ρ is continuous

4.4 Entropy and the arrow of time

Entropy as defined in (4.4) depends only on the microscopic laws of motion, which as we have
seen in 4.1.2 are time-reversal invariant: this means that S in equation (4.4) is time independent
and so strictly speaking the entropy of a system should never increase.
To see that explicitly let us show that in general:

d

dt

∫
f(ρ(Q,P, t))dΓ = 0

where f is a generic function such that f(0) = 0. In our case f(x) = −x lnx, which formally
is not well defined for x = 0; however, since limx→0 x lnx = 0 we can extend the function
continuously and define 0 · ln 0 to be zero.
Therefore:

d

dt

∫
f(ρ(Q,P, t))dΓ =

∫
∂f

∂ρ

∂ρ

∂t
dΓ = −

∫
∂f

∂ρ
~∇ · (Vρ)dΓ

where in the last step we have used the fact that since ρ is a probability density it must satisfy
the continuity equation ρ̇ = −~∇(Vρ) (see also the discussion of Liouville’s theorem in D.2,
appendix D), and V = (Q̇, Ṗ); we now can easily see that ~∇ · (Vρ) = V · ~∇ρ:

~∇ · (Vρ) =
3N∑
i=1

[
∂

∂qi
(q̇iρ) +

∂

∂pi
(ṗiρ)

]
=

3N∑
i=1

[
∂

∂qi

(
∂H
∂pi

ρ

)
− ∂

∂pi

(
∂H
∂qi

ρ

)]
=

=
3N∑
i=1

[
∂H
∂pi

∂ρ

∂qi
− ∂H
∂qi

∂ρ

∂pi

]
=

3N∑
i=1

(
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

)
= V · ~∇ρ

Therefore:
d

dt

∫
f(ρ(Q,P, t))dΓ = −

∫
∂f

∂ρ
~∇ρ · VdΓ = −

∫
~∇f · VdΓ

where by definition of gradient ~∇f = (∂f/∂ρ)~∇ρ. Now, we have that ~∇f · V = ~∇(fV), which
can be shown exactly as we have done for ρ. Thus, using Gauss theorem:

d

dt

∫
f(ρ(Q,P, t))dΓ = −

∫
~∇(fV)dΓ = −

∫
Σ∞

f(ρ)V · d~Σ∞
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where Σ∞ is the surface that encloses the phase space volume14; since ρ is a probability density
it will vanish on Σ∞

15 and so will f(ρ), since we are supposing f(0) = 0. Therefore the last
integral is null:

d

dt

∫
f(ρ(Q,P, t))dΓ = 0

From this we get:
dS

dt
= 0

and note that as we have obtained it, this relation is always valid. This means that in principle if
we consider a system undergoing an irreversible transformation, like the adiabatic expansion
of a gas, its entropy remains constant; however we know that in such cases entropy always
increases: where does this discrepancy come from?

What we want to show now is that this discrepancy comes from the fact that in reality entropy
is not a property of a given system, but of our knowledge about it.
Let us first see this in a rather intuitive way: suppose we are computationally integrating the
equations of motion of a system made of N particles closed in a fixed volume and to choose
very unusual initial conditions, for example we set the initial positions of the particles in only
one half of the system (we are thus simulating the adiabatic expansion of a gas). We let the
system evolve for some time, then we stop and invert all the velocities of the particles and then
restart the integration; what we are doing is essentially equivalent to letting the system evolve
for some time and then “rewind” it. We would therefore expect that as the system evolves the
particles will come back to their initial conditions since we are just “rewinding” the process;
however this doesn’t occur and the gas evolves as a normal ideal gas.
This happens because computers have finite precision: the position and momentum of every
particle is stored with a fixed number of significant figures, and as time passes we are loosing
information about the system because the computer will discard many significant figures that
(mathematically) should be present. In order to actually see the gas go back to its original
configuration we would thus need a computer with infinite precision, which would not loose
information.

Let us now see this concept in a more formal way.
When we consider a system from a microscopic point of view16 the probability density ρ has
complete information on the system since it will be of the form:

ρ(Q,P, t) = δ(Q−Q(t))δ(P− P(t))

Consider now a situation where we have less information on the system: suppose for exam-
ple we have a phase space probability density ρ(Q, t) that carries no information about the
momenta of the particles17. Then as ρ evolves it will satisfy a diffusion-like equation in config-

14Note: in momentum space this is always a surface at infinity, while in configuration space it can also be a finite
surface depending on the properties of the system (obviously, if the particles can occupy a limited space then Σ∞
in configuration space will be finite).

15Intuitively, this can be justified from the fact that ρ must be normalized:∫
ρ(Q,P)dΓ = 1

and this can happen only if ρ tends to zero at infinity.
16Which is what we have done in the proof of the fact that Ṡ = 0, since we have used Hamilton’s equations.
17For example, this can me obtained from the previous probability density by integrating over the momenta and

then renormalizing.
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uration space18:
ρ̇(Q,P) = D∇2ρ(Q,P)

If the entropy of the system is:

S = −kS
∫
ρ(Q, t) ln ρ(Q, t)dQ

then we have:
dS

dt
= −kS

∫
∂ρ

∂t
ln ρdQ− kS

∫
∂ρ

∂t
dQ

The second integral is null: ∫
∂ρ

∂t
dQ =

∂

∂t

∫
ρdQ =

∂

∂t
1 = 0

so integrating by parts the remaining term and using Gauss theorem:

dS

dt
= −kS

∫
∂ρ

∂t
ln ρdQ = −kSD

∫
∇2ρ ln ρdQ = −kSD

∫
Σ∞

ln ρ~∇ρ·d~Σ∞+kSD

∫
~∇ρ·~∇ ln ρdQ

where Σ∞ is the surface that encloses the system in configuration space. Assuming that ρ, ~∇ρ→
0 on Σ∞, then since ~∇ ln ρ = ~∇ρ/ρ we have:

dS

dt
= kSD

∫
|~∇ρ|2

ρ
≥ 0

Therefore, we have found that now the entropy of the system really increases, and this follows
only from our lack of knowledge about the momenta of the particles.

We can thus see how entropy really emerges when we have not a perfect knowledge on the
system, or in other words when we start ignoring or excluding some degrees of freedom.

4.5 A niftier framework for the statistical ensembles

The way we have obtained the canonical and grand canonical partition functions from the mi-
crocanonical ensemble in 3.3 and 3.4 is a rather “classic” one, and maybe also the most intuitive.

However this is not the only possible one: in fact, as we now want to show it is possible to ob-
tain all the ensembles (including the microcanonical one) from the principle of maximum entropy,
where the entropy is defined in the most general way, i.e. as in (4.8). In other words what we
want to see is that maximizing the entropy of a system as defined in (4.8) with appropriately
chosen constraints it is possible to determine both the canonical and grand canonical ensem-
bles.

Let us consider a very different but simple and intuitive example to understand how this can
be possible.
Suppose we have a normal six-sided die; if we know nothing about it (namely we don’t know
if it has been fixed or not) then all the possible rolls have the same probability, i.e. pi = 1/6 for

18In fact, as we have seen in 2.1.2 the diffusion and continuity equations are equivalent if ~J = −D~∇ρ: therefore
since ρ satisfies a continuity equation (being a probability density) then it will also satisfy a diffusion equation with
diffusion constant D.
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i = 1, . . . , 6. This fact can also be obtained from the maximization of Shannon’s entropy (we
remove any proportionality constant for simplicity):

S = −
6∑
i=1

pi ln pi

with the constraint
∑

i pi = 1. In fact (as it must be done for constrained optimization problems
like this one) the maximization of S leads to:

∂

∂pj

[
−
∑
i

pi ln pi − λ

(∑
i

pi − 1

)]
= −1− ln pj − λ = 0 ⇒ pj = e−λ−1 := c

where we have simply relabelled the constant in the last step (note that pj doesn’t depend on
j); therefore from

∑
i pi = 1 we have exactly pi = 1/6.

Now, suppose that the die has been fixed and that p1 = 2p6; in order to find the new probabili-
ties pi we now have to maximize S with the additional constraint p1 = 2p6. Therefore:

∂

∂pj

[
−
∑
i

pi ln pi − λ

(∑
i

pi − 1

)
− µ (p1 − 2p6)

]
= 0 ⇒

⇒


−1− ln pj − λ = 0 j 6= 1, 6

−1− ln p1 − λ− µ = 0 j = 1

−1− ln p6 − λ+ 2µ = 0 j = 6

⇒


pi = e−λ−1 := 1/Z i 6= 1, 6

p1 = e−λ−1−µ

p6 = e−λ−1+2µ

⇒

⇒


pi = 1/Z i 6= 1, 6

p1 = e−µ/Z

p6 = e2µ/Z

and requiring that p1 = 2p6 and
∑

i pi = 1 we have µ = − ln 2/3 and Z = 4 + e−µ + e2µ.
Explicitly:

pi = 0.170 i 6= 1, 6 p1 = 0.214 p6 = 0.107

So we see that we indeed managed to reconstruct all the probability distribution of the system
only from the maximization of its entropy, with the appropriate constraints.

Let us now see this more in general: suppose we have a system which can be found in Ω
different states (for simplicity we now consider the discrete case), each with probability pi. Let
us also suppose that we have put some contraints on the mean values of some observables O(i)

defined on this system, i.e.: 〈
O(0)

〉
=
∑
i

pi = 1 = O
(0)

〈
O(1)

〉
=
∑
i

piO
(1)
i = O

(1) · · ·
〈
O(α)

〉
=
∑
i

piO
(α)
i = O

(α)

(4.9)

where O(δ)
j are some functions depending on j (considering the previous example of the die,

with our notation we have Oi(1) = 2δi1− δi6) and O(δ) are some given values of the observables.
We have put also the normalization condition in the same form as the other constraints (with
Oi

(0) = 1) in order to have a more general notation.
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As we know the entropy of the system will be given by (we again drop any constant in front of
S):

S = −
∑
i

pi ln pi

Let us therefore see what happens if we maximize S with the constraints (4.9).
What we have to find is:

max
~p(~λ)

[
S − λ0

(〈
O(0)

〉
−O(0)

)
− λ1

(〈
O(1)

〉
−O(1)

)
− · · · − λα

(〈
O(α)

〉
−O(α)

)]
where ~p(~λ) is a short notation to indicate the set of the probabilities pi seen as functions of λj .
Therefore:

∂

∂pj

[
S − λ0

(〈
O(0)

〉
−O(0)

)
− λ1

(〈
O(1)

〉
−O(1)

)
− · · · − λα

(〈
O(α)

〉
−O(α)

)]
=

= −1− ln pj − λ0O
(0)
j − λ1O

(1)
j − · · · − λαO

(α)
j = 0

⇒ pj = e−1−λ0−λ1O
(1)
j −···−λαO

(α)
j

From the normalization condition we have:

1 =
∑
j

pj = e−1−λ0
∑
j

e−λ1O
(1)
j −···−λαO

(α)
j

If we define:
Z :=

∑
j

e−λ1O
(1)
j −···−λαO

(α)
j

then:

Z = e1+λ0 ⇒ pj =
1

Z
e−
∑
δ λδO

(δ)
j

which has a very familiar form (the one of the canonical and grand canonical probability den-
sities).

Now, in order to solve the problem we still have to impose all the other constraints:
〈
O(γ)

〉
=

O(γ). These can be written as:

〈
O(γ)

〉
=
∑
j

pjO
(γ)
j =

1

Z

∑
j

e−
∑
δ λδO

(δ)
j O

(γ)
j =

∑
j e
−
∑
δ λδO

(δ)
j O

(γ)
j∑

j e
−
∑
δ λδO

(δ)
j

From the definition of Z we see that:〈
O(γ)

〉
= − 1

Z

∂Z

∂λγ
= −∂ lnZ

∂λγ

which has exactly the same form as the equation that defines the mean value of the energy in
the canonical ensemble, for example.
Therefore the values λδ of the parameters λδ which maximize S with the constraints (4.9) are
the solutions of the equations:

O
(1)

= −∂ lnZ

∂λ1 |λ1

· · · O
(α)

= −∂ lnZ

∂λα |λα
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These equations are in general very difficult to solve analytically but there is a rather simple
method, which we now briefly see, that allows one to determine the parameters λδ numerically.
Let us begin noting that:

∂2 lnZ

∂λα∂λγ
=

∂

∂λα

(
1

Z

∂Z

∂λγ

)
=

∂

∂λα

〈
O(γ)

〉
=

∂

∂λα

∑j e
−
∑
δ λδO

(δ)
j O

(γ)
j∑

j e
−
∑
δ λδO

(δ)
j

 =

=

∑
j e
−
∑
δ λδO

(δ)
j O

(γ)
j O

(α)
j∑

j e
−
∑
δ λδO

(δ)
j

−
∑

j e
−
∑
δ λδO

(δ)
j O

(α)
j

Z2

∑
i

e−
∑
δ λδO

(δ)
i O

(γ)
i =

=
〈
O(α)O(γ)

〉
−
〈
O(α)

〉〈
O(γ)

〉
=
〈(
O(α) −

〈
O(α)

〉)(
O(γ) −

〈
O(γ)

〉)〉
where the last term is the mean value of the product of two fluctuations: this is the covariance
of O(α) and O(γ). In general, the (α, γ)-th element of the covariance matrix C is exactly defined
as the covariance between O(α) and O(γ):

Cαγ :=
〈(
O(α) −

〈
O(α)

〉)(
O(γ) −

〈
O(γ)

〉)〉
Therefore, we have that:

∂2 lnZ

∂λα∂λγ
= Cαγ

The covariance matrix is positive (semi)definite; in fact if ~x is a generic vector, then:

~x · C~x =
∑
α,γ

Cαγxαxγ =

〈[∑
δ

xδ

(
O(δ) −

〈
O(δ)

〉)]2〉
≥ 0

We needed these observations because if we now define the function:

F = lnZ +
α∑
δ=1

λδO
(δ)

then since −∂ lnZ/∂λδ |λδ = O(δ) we have that:

∂F

∂λδ |λδ
= 0

i.e. F has an extremum in λδ. However:

∂2F

∂λα∂λγ |λα,λγ
= Cαγ ≥ 0

and so this extremum is a minimum: F is minimized by the values λδ of the parameters λδ
which maximize the entropy S of the system.
Therefore, in this way we can simply determine the values λδ by finding the minima of F ,
which is a rather straightforward computational problem.

Let us now briefly see what happens in the continuous case, so that we can use what we have
seen in the framework of ensemble theory.
Since we are now dealing with continuous probability densities ρ, they will not depend on the
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discrete index i but on the “continuous index” (Q,P), and of course the summations over i
must be replaced with integrations in phase space. In other words, the entropy of the system
will be:

S = −
∫
dΓρ(Q,P) ln ρ(Q,P)

and the contraints are: 〈
O(0)

〉
=

∫
dΓρ(Q,P) = 1 = O

(0)

〈
O(1)

〉
=

∫
dΓρ(Q,P)O(1)(Q,P) = O

(1) · · ·
〈
O(α)

〉
=

∫
dΓρ(Q,P)O(α)(Q,P) = O

(α)

The probability density will be of the form:

ρ(Q,P) =
1

Z
e−
∑
δ λδO

(δ)(Q,P) Z =

∫
e−
∑
δ λδO

(δ)(Q,P)dΓ

and the values λδ of the parameters λδ which maximize S will be again the solutions of the
equations:

O
(1)

= −∂ lnZ

∂λ1 |λ1

· · · O
(α)

= −∂ lnZ

∂λα |λα

Let us now apply all this to the ensemble theory.
In the microcanonical ensemble we only have the normalization constraint:∫

ρ(Q,P)dΓ = 1

where the integration is done over the (Q,P) points that satisfy H(Q,P) = E, with H the
Hamiltonian of the system and E a given value of the energy. In this case, therefore, the only
non-null “observable” is O(0), which as we have seen is a “fictious” one (defined so that also
the normalization condition can be put in the form of a constraint on the mean value of a
given observable). In other words, referring to our notation we have α = 0 and the probability
density has indeed the form:

ρ(Q,P) =
1

Ω(E)
= const.

where we have called Ω(E) the normalization factor.
The value of Z can be obtained intuitively as we have done in 3.2, i.e. since ρ must be zero
everything but on the phase space hypersurface of constant energy E, whose volume is Ω(E),
then:

ρ(Q,P) =
δ(H(Q,P)− E)

Ω(E)

(see also the footnote on page 37 for a more “formal” way to derive this).

In the canonical ensemble we have a new constraint, i.e. we require the mean value of the
energy to be fixed:

〈H〉 =

∫
ρ(Q,P)H(Q,P)dΓ = E

With our previous notation we have α = 1 and O(1)(Q,P) = H(Q,P), so that:

ρ(Q,P) =
1

Z
e−λ1H(Q,P) Z =

∫
e−λ1H(Q,P)dΓ
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where19 λ1 = β.

In the grand canonical ensemble, then, we have the additional constraint of having the mean
value of the number of particles fixed, namely O(2) = N . Explicitly we have that the entropy
of the system is:

S = −
∑
N

∫
dΓNρN (Q,P) ln ρN (Q,P)

and the constraints are:∑
N

∫
ρN (Q,P)dΓN = 1

∑
N

∫
ρN (Q,P)HN (Q,P)dΓN = E

∑
N

∫
ρN (Q,P)NdΓN = N

In this case, we will have:

ρN (Q,P) =
1

Z
e−λ1HN (Q,P)−λ2N Z =

∑
N

∫
e−λ1HN (Q,P)−λ2NdΓN

where λ1 = β and λ2 = −µβ.

We conclude with an observation.
We have determined the properties of the ensembles fixing the values of the first moments of
the observables (i.e.,H and N ); we can ask: why haven’t we fixed also other moments (namely
H2, N2 etc.)?
In general it can happen that those additional moments are redundant; let us see a simple
example in order to understand that.
Suppose x is a stochastic variable distributed along a probability distribution %(x); imagine
that we are given Ω values xi of x without knowing %(x) and that we want to understand what
%(x) is from the xi-s. How can we proceed? We could try to guess % with a procedure similar to
what we have seen now. For example we could compute the n-th moments of %with n = 1, 2, 3,
namely 〈x〉,

〈
x2
〉

and
〈
x3
〉
. Then, our guess for % would be:

%(x) =
1

Z
e−λ1x−λ2x2−λ3x3

Z =

∫
e−λ1x−λ2x2−λ3x3

dx

and the values λi of λi which give the correct expression of % are given by the solutions of:

∂ lnZ

∂λn |λn
= O

(n)

where O(n) is computed from the given set of xi:

O
(n)

=
1

Ω

∑
i

xni

If we determine λi with and increasing number Ω of data, we expect (or at least hope) that the
parameters λi will tend to some definite values; what happens is that they often tend to zero,
when i ≥ 2.

19At this point there is no way to understand that, and we are about to see something similar also in the grand
canonical ensemble. This is the disadvantage of this way of deducing the statistical ensembles: it is elegant and
mathematically consistent, but not really physically intuitive. The “classical” way we have used to derive the
ensembles is surely less formal and rigorous, but it allows to understand physically what happens.
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For example, if in reality %(x) = e−x/x0/x0 for x ≥ 0 then repeating the computations with
higher values of Ω we would find λ1 → 1/x0 and λ2, λ3 → 0: the second and third moments of
x are useless if we want to determine %(x).
Let us note, however, that the use of the moments of x can be useless in some cases: if in fact
%(x) = 1/x2 for x ≥ 1 then we will never be able to express it as a product of exponentials, so
the parameters λi will not tend to definite values. What can we do in this case? We can use the
moments of lnx instead of x; in fact if we compute for example 〈lnx〉 = O(1), then our guess
for %(x) will be:

%(x) =
1

Z
e−λ1 lnx =

1

Z
· 1

xλ1

and so in this case we would expect λ1 → 2; we also see that if we included come higher mo-
ments of lnx, their relative parameters would have all gone to zero, and so all the n-th moments
with n ≥ 2 are redundant.
Therefore, we see that depending on the kind probability distribution we use different “recipes”20

in order to determine %(x).

However, in ensemble theory something slightly different happens. Suppose in fact that we
have fixed the first two moments ofH in the canonical ensemble; then we would have:

ρ(Q,P) =
1

Z
e−λ1H−λ2H2

Now the energy is extensive, so H ∝ N and thus the leading term in the exponential should
be H2; in general if we fixed an arbitrary number of moments of H, the leading one is the last.
This, however, doesn’t really make sense from a physical point of view since it would imply
that the only significant contribution is that of the n-th moment, with n→∞.
Therefore, in the case of statistical mechanics we are (although implicitly) assuming that the mo-
ments different from the first are actually insignificant, since strictly speaking there is nothing
that would prevent us from fixing also their values. It is the incredible accuracy of the predic-
tions made by statistical mechanics with the experimental results that confirms that this is a
reasonable assumption.

20It could be asked then what can we do if we don’t know absolutely nothing about %. In this case there is nothing
that can help, besides experience; in such cases, in fact, one tries to get some insights on the problems and then try
different “recipes”, from which something new can be learned about %(x).



Chapter 5

Statistical mechanics of phase
transitions

5.1 Introduction

In chapter 3 we have seen how the tools of statistical mechanics allow us to interpret and
explain in a new and elegant way the statistical “origin” of thermodynamics, and how to derive
all the interesting properties of a thermodynamic system. Very briefly, in general terms the
whole philosophy of what we have seen can be summarized as follows: given a finite-sized
system, in general its HamiltonianH can be written in the form:

H = −kBT
∑
n

KnOn

where Kn are called coupling constants (which generally are external parameters that can be
controlled experimentally) and On local operators, which are combinations (normally linear or
quadratic, but in general they can be any function) of the degrees of freedom of the system
considered (such as the positions and momenta of the particles in a gas, for example).
Then, we define the (canonical) partition function of a system as:

Z[K] = Tr e−βH

where the trace Tr is a general way to express the sum (or integral, depending on the discrete
or continuous nature of the system) over all the degrees of freedom, and then the free energy is
defined as:

F [K] = −kBT lnZ[K]

The thermodynamic properties of the system can be obtained taking appropriate derivatives of
F [K] once the thermodynamic limit has been taken.

We now stop for a moment in order to study this concept, since we have not seen it explicitly
before.
We know that the free energy of a system is an extensive quantity; if we call L a characteristic
length of our system and d its dimensionality we will have that the volume V and the surface
S of the system will be proportional to appropriate powers of L:

V ∝ Ld S ∝ Ld−1

Therefore we expect that for a finite system:

F [K] = V fb[K] + Sfs[K] +O(Ld−2)

91
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where fb is the bulk free energy density and fs the surface free energy density. The thermodynamic
limit of the bulk free energy density is defined as:

fb[K] = lim
V→∞

F [K]

V

when this limit exists and is independent of the region where we have defined our system.
Similarly, the thermodynamic limit of the surface free energy density is defined as:

fs[K] = lim
S→∞

F [K]− V fb[K]

S

when this limit exists and is independent of the region where the system is defined.
Of course, sometimes some other constraints must be put in order to take meaningful limits:
for example, for a fluid system the limit V →∞ per se would be rather unreasonable unless we
simultaneously take the limit N →∞ so that the density N/V of the system remains constant.
The existence of the thermodynamic limit for a system is absolutely not trivial, and its proof can
sometimes be really strenuous. In particular, it can be shown that in order for a thermodynamic
limit to exist the forces acting between the degrees of freedom of the system must satisfy certain
properties, for example being short ranged.
For example, if a d-dimensional system is made of particles that interact through a potential of
the form:

ϕ(~r) =
1

rσ

where r = |~r| is the distance between two particles, then it can be shown that the thermody-
namic limit of the system exists if d > σ.

5.1.1 Statistical mechanics and phase transitions

Now, in all the cases considered in the previous chapters we have never taken into account the
possibility for our system to undergo a phase transition. We can therefore wonder if all the ma-
chinery that we have built can actually be used also when a thermodynamic system changes
phase.
In other more “philosphical” words the issue can be reformulated as follows: is statistical me-
chanics a tool that allows us to derive the whole thermodynamics of a system, phase transitions
included, or it works only when we limit ourselves to single phases?
It would be rather unsatisfying if the latter was the case, because after all the Hamiltonian (and
thus the partition function) of a system does not change during a phase transition, since the
interaction potential between the particles does not change with the temperature.

As we have seen in 1.2, phase transitions are characterized by singularities (jump discontinu-
ities or divergences) in the derivatives of thermodynamic potentials, so if we want the partition
function of a system to include phase transitions it must exhibit such singularities. However,
by definition the partition function is simply a sum of exponentials, so it should be itself an
analytic function and thus incapable of reproducing phase transition-like phenomena.
This is true as soon as we consider finite-sized systems: in fact, in this case the partition function
is a finite sum of exponential, so it is inevitably an analytic function. However, infinite sums of
analytic functions can be non analytic, so we can suppose that the partition function can exhibit
singularities (and thus phase transitions) only in the thermodynamic limit.
This is indeed what happens; in fact, it can be shown1 that if one allows eβµ (with µ the chemi-
cal potential) to assume complex values in the thermodynamic limit at least one of the poles of
the partition function moves on the real axis.

1See C. N. Yang and T. D. Lee, Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation,
Physical Review, vol. 87, 3.
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Heuristic energy-entropy argument

We could now ask how can we understand if a system can undergo phase transitions at all; a
simple but useful tool to do so is the so called energy-entropy argument: at high temperatures the
entropy S will be the dominant term in the free energy F = U − TS of the system, and the free
energy is thus minimized by maximizing S; at low temperatures on the other hand the internal
energy U can be the most important contribution to F and so the free energy is minimized
by minimizing U . Therefore if maximizing S for high temperatures and minimizing U for
low ones brings to two different macroscopic equilibrium configurations of the system, we can
conclude that there must be at least one phase transition between T = 0 and T =∞ (of course
this requires that we know the exact expressions of U and S).

5.1.2 Long range correlations

We now want to show that one of the characteristic traits of critical transitions, that distin-
guishes them from other kinds of phase transitions, is the fact that the divergence of response
functions in the proximity of the critical point is intimately bound to the existence of long-ranged
strongly correlated microscopic fluctuations.
We shall do that in a very qualitative way, and to make things clearer we consider a magnetic
system (but of course our considerations are absolutely general and extensible to other kinds
of systems).

When a magnetic field H is present2, the partition function of a magnet is:

Z = Tr e−β(H−HM)

whereH is the Hamiltonian of the system. The magnetization of the system at equilibrium is:

〈M〉 =
1

Z
Tr
[
Me−β(H−HM)

]
=

∂ lnZ

∂(βH)

while its susceptibility is:

χT =
∂ 〈M〉
∂H

= − 1

Z2
Tr
[
βMe−β(H−HM)

]
· Tr

[
Me−β(H−HM)

]
+

1

Z
Tr
[
βM2e−β(H−HM)

]
=

=
β

Z
Tr
[
M2e−β(H−HM)

]
− β

Z2

{
Tr
[
Me−β(H−HM)

]}2
=

1

kBT

(〈
M2
〉
− 〈M〉2

)
However, from a microscopic point of view the magnetization of the system can be written as:

M =

∫
m(~r)d~r

where m(~r) is the local magnetization in ~r. If we substitute this expression in χT we get:

χT = β

∫
(〈m(~r)m(~s)〉 − 〈m(~r)〉 〈m(~s)〉) d~rd~s (5.1)

If our system is spatially homogeneous, then 〈m(~r)〉 = m is constant and 〈m(~r)m(~s)〉 :=
G(~r − ~s), called correlation function, depends only on the relative distance between two points.
Defining the connected correlation function as:

〈m(~r)m(~s)〉c := 〈m(~r)m(~s)〉 − 〈m(~r)〉 〈m(~s)〉 = G(~r − ~s)−m2

2We are treating H , just like the magnetization M , as scalars instead as vectors: in order to make things easier,
we are supposing that the real fields ~H and ~M are both directed along the same direction, say the z axis of our
reference frame, and we are only considering their magnitudes.
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sometimes also called Gc(~r − ~s), and changing variable to ~x = ~r − ~s we get:

χT = β

∫
Gc(~r − ~s)d~rd~s = β

∫
Gc(~x)d~xd~s =

V

kBT

∫
Gc(~r)d~r (5.2)

where in the last step we have renamed the variable ~x to ~r.

The connected correlation function is essentially (as it can be understood from its definition) a
measure of how the fluctuations of the magnetization from the mean value m in a part of the
system influence those in another part of the system.
Now, we expect that in general the correlation function will decrease on long distances. We can
therefore write3:

Gc(~r) ∼ e−
|~r|
ξ at least when |~r| > ξ

where ξ is a characteristic length of the system called correlation length.
If we call g the characteristic value of the connected correlation function for |~r| < ξ (namely we
suppose that it is constant and equal to g for lengths smaller than ξ4), then from (5.2) we have
(neglecting any proportionality constant):

χT
βV

=

∫
Gc(~r)d~r <

∫
|~r|<ξ

Gc(~r)d~r =

∫
|~r|<ξ

gd~r ∝ gξ3

namely:
χT
βV

< gξ3

We thus immediately see that if T → Tc, since χT →∞ (as we know from the thermodynamics
of critical phase transitions) we must also have ξ →∞: in the neighbourhood of a critical point
the correlation length of the system diverges.
As we have seen in 1.5, we describe the divergence of ξ by means of the critical exponent ν,
namely we set:

ξ ∼ |t|−ν

Furthermore, experiments and exact solutions of simple models show that the correlation func-
tion decays near the critical point as a power of |~r|, with a critical exponent called η:

G(~r) ∼ 1

|~r|d−2+η

where d is the dimensionality of the system (see 1.5).

5.1.3 Finite size effects on phase transitions

We have just seen that phase transitions can occur only in the thermodynamic limit. However,
this is only a mathematical concept and can never be really reached: real systems, regardless of
how much big they are, are not infinite! We can therefore ask if what we have just seen is useful
at all, namely if and how much real systems differ from their thermodynamic limit.

Consider the correlation length of a thermodynamic system: we know that it depends on the
temperature of the system, and that it diverges in the neighbourhood of a critical point. Let
us suppose that our system is finite, and call L the length of its size; of course the correlation
length ξ of the system cannot be greater that L itself and so for temperatures near enough to

3This form is also justified, as we will see, from the fact that in many cases Gc turns out to actually decay
exponentially with ~r.

4In fact, e−x is of the order of 1 when x < 1.
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the critical one the behaviour of the system will differ from that of its thermodynamic limit.
Let us see with a realistic example how big this difference is; suppose that:

ξ ∼ ξ0t
−2/3

where t = (T − Tc)/Tc is the reduced temperature and ξ0 ≈ 10 Å is the correlation length far
from the critical point. This form for ξ is realistic for fluids and magnets, and ξ0 is an overesti-
mate in many real cases.
If we suppose L = 1 cm, we have ξ = L when t ≈ 10−11: this means that we should be able
to measure temperatures with a precision of one part in 1011 in order to detect deviations from
the thermodynamic limit!

We therefore see that even if in principle real systems behave differently from their thermody-
namic limits, these differences are extremely small and negligible in all reasonable experimental
conditions.
We are thus legitimated to use thermodynamic limits in statistical mechanics in order to study
phase transitions of real macroscopic systems.

5.2 Models in statistical mechanics

Models are the main instrument of statistical mechanics that allow to “translate” the physical
configuration of a system in a mathematical language, so that it can be thoroughly studied and
its behaviour predicted.
The role of models in statistical mechanics, and more in general the role of models in the whole
scientific method, is of course a very intriguing and philosophically demanding one; of course
we will not cover such a vast and difficult issue, and we will only limit ourselves to consider
the two diametrically opposing points of view about how models are used.

The “traditional” point of view has been to describe as much faithfully as possible a system,
including all its details; in case the theory is unable to explain the experimental results, then
some parameters of the system are fine-tuned, or additional parameters are included.
On the other hand a more modern point of view, born in the framework of statistical mechanics
and motivated by the study of phase transitions and critical phenomena, is that of describing
a system with the most minimal and simple possible model, introducing few parameters or
properties eventually motivated by symmetry or very general arguments. In such systems in
fact it is not necessary to introduce deep levels of details in order to understand their phe-
nomenology, and the study of such minimal models has often led to answers that turned out
to be even more universal that those that were looked for when the model was introduced.
The use of this more minimalistic approach has been ultimately justified with the introduction
of the concepts of universality (see 1.5) and Renormalization Group (see chapter 8).

We are now going to introduce some very important models in statistical mechanics: their
study will allow us to learn a lot about the statistical mechanics of phase transitions.

5.3 The Ising model

5.3.1 Introduction

The Ising model (in its one-dimensional version) was proposed by Ernst Ising in his PhD thesis
in 1925 as a tool to describe the thermodynamic properties of magnetic systems from a micro-
scopic point of view. Ising found (as we will shortly see) that in the case he considered the
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· · ·

S1

S2 S3

S4

S5

S6

(a) Ising model in one dimension

(b) Ising model in two dimensions

(c) Ising model in three dimensions

Figure 5.1: Representation of the Ising model in various dimensions (the spins pointing dow-
nards in two and three dimensions have been coloured differently to be better identified)

system does not exhibit any phase transition for T > 0, and he incorrectly concluded that the
whole model was not useful to describe such systems.
However, this model has been later studied again and in different configurations and many
important properties have been discovered; historically Ising model has been one of the most
(if not the most itself) heavily studied model in statistical mechanics and it is often used as a
testing ground when new theories or methods are developed.
Another extremely important characteristic of the Ising model, that also justifies the effort we
will make in order to study it, is that it does not only apply to magnetic systems: as we will see
many other systems5 can be shown to be equivalent to an appropriately defined Ising model.

The d-dimensional Ising model is defined as follows: consider a d-dimensional lattice with N
sites, each labelled by the index i = 1, . . . , N ; in general the lattice is supposed to be hypercu-
bic, but this is not necessary: in two dimensions, for example, we can consider triangular or
“honeycomb” lattices, while in three dimensions we can have body-centered or face-centered
cubic lattices6. What distinguishes one lattice from another is its coordination number z, defined
as the number of the nearest neighbours of a site. In the case of hypercubic lattices it can be
easily seen (case by case) that z = 2d, where d is the dimensionality of the system.
The degrees of freedom of the model are discrete variables Si defined on each site that can only

5Examples of such systems are fluids (see 5.3.4), binary alloys (see 5.3.6) and neural networks (see 5.3.7).
6The number of possible lattices is predicted by group theory, and amazingly all these mathematically possible

lattices are found in nature.
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assume the values +1 and −1; therefore, the number of the possible configurations of the sys-
tem is 2N .

In the original purpose of the Ising model the lattice represents the atomic lattice of a metal and
the variables Si are the spins of the atoms, or rather their component along the vertical axis7;
therefore, Si = +1 corresponds to a spin pointing upwards while Si = −1 downwards (see
figure 5.1), and the study of this model should determine if and how all these spins can align
so that the system can have a spontaneous net magnetization. However, since the Ising model
can be used to describe completely different systems this interpretation is not the only possible
one; since this model has always been associated to magnets (but also for historical reasons)
we will in the following continue to use a terminology proper only to magnetic systems.

The usefulness of the Ising model (but in general of lattice theories) goes much further that
what can now be imagined (considering also the fact that this model can be used to describe
systems different from magnetic ones).
Lattice theories are in fact widely used in many areas of physics: just as an example, apart
from “easily imaginable” applications of the Ising model in solid state physics, also quantum
relativistic theories can be formulated in terms of lattices. QCD, for example, widely uses four-
dimensional lattice models (with Minkowski spatio-temporal metric, of course) to describe
quantum phenomena. We therefore see that also models with “strange” dimensionality (i.e.
greater than d = 3) can be actually useful.

In order for this model to be interesting, the degrees of freedom Si must not be independent8:
we therefore assume that the spins interact with each other with exchange interactions that cou-
ple in general an arbitrary number of spins, and also with an external field H that can change
from site to site.
Therefore, the most general form of the Hamiltonian of the Ising model for a given spin config-
uration is:

H = −
∑
i

HiSi −
∑
i,j

JijSiSj +
∑
i,j,k

KijkSiSjSk + · · ·

The first two minus signs are present because in general two adjacent magnetic moments tend
to align, so for the system it is energetically convenient to have as many aligned spins (and
aligned along the external field) as possible.
For such systems the trace operator, being the sum over all the possible values of the degrees
of freedom, takes the form:

Tr =
∑

{Si=±1}

=
∑
S1=±1

∑
S2=±1

· · ·
∑

SN=±1

As usual, the partition function will be:

Z(T, {Hi}, {Jij}, . . . ) = Tr e−βH

and the finite-size free energy:

F (T, {Hi}, {Jij}, . . . ) = −kBT lnZ(T, {Hi}, {Jij}, . . . )

Then, the thermodynamic properties of the system can be obtained taking the thermodynamic
limit:

f(T, {Hi}, {Jij}, . . . ) = lim
N→∞

1

N
F (T, {Hi}, {Jij}, . . . )

7Note that from quantum mechanics we know that in general the spin of an atom is proportional to a given frac-
tion of ~: we are “ignoring” the magnitude of the spin, “reabsorbing” it in the definition of the coupling constants.

8This is not really true: as we will see in 5.3.5, we can learn something interesting also in the non-interacting
case.
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and then appropriately deriving f .

For the sake of simplicity, from now on we will always neglect interactions that couple more
than two spins, and we will also consider the field H as constant over the system9.

Now, what about the existence of the thermodynamic limit for the Ising model?
It has been shown that in general the thermodynamic limit exists if the two-spin interaction Jij
satisfies: ∑

i 6=j
|Jij | <∞

Therefore, we can see that what determines the existence of the thermodynamic limit is the
dimensionality of the system and the range of the interactions. For example, if the interaction
between two spins Si and Sj at the positions ~ri and ~rj is of the form:

Jij = A|~ri − ~rj |−σ

then it can be shown that we must have σ > d in order for the thermodynamic limit to exist.

5.3.2 Analytic properties of the Ising model

Since we want to analyse the Ising model in order to determine if and how it exhibits phase
transitions, and that phase transitions are characterized by singularities in the thermodynamic
potentials, it is important to study the analytic properties of the Ising model’s free energy so
that we can find possible non-analytic behaviours and therefore understand when such phe-
nomena can occur.

Let us therefore consider an Ising model where the external field H is constant and the interac-
tion Jij occurs only between nearest neighbouring spins, namely:

Jij =

{
J Si and Sj are nearest neighbours
0 otherwise

This way the Hamiltonian of the system is:

−H = J
∑
〈ij〉

SiSj +H
∑
i

Si

where the notation 〈ij〉means that i and j are nearest neighbours10.

We now state the most important analytic properties of the bulk free energy density f (which
hold in general).

Theorem. Let f be the free energy density of a system at temperature T subject to an external (generic)
field H . Then:

9In the study of this situation, including the one in which there is no external field, we will use the method of
sources: this consists in keeping always the term containing Hi in the Hamiltonian, and at the end of the calculations
(i.e. after the thermodynamic limit) set Hi to any desired constant value, including zero.

10With this notation we are also implicitly assuming that we are not counting twice terms that are equal; to be
explicit, considering the unidmensional case if we sum over all the possible nearest neighbours we would have
terms like S1S2 +S2S1 +S2S3 +S3S2 + · · · : every term (except eventually for the boundaries, but only if we don’t
take periodic conditions) is counted twice (SiSj = SjSi), so we should multiply everything by 1/2 to correct this
exceeding number of terms. With our notation we are implicitly doing that, and so the sum can be explicitly written
as S1S2 +S2S3 +S3S4 + · · · ; however, sometimes in the future it will be convenient to use the other convention, so
we will count every possible term and then divide by 2.
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a) f is negative, f < 0

b) f is a continuous function of its arguments

c) The derivatives of f exist almost everywhere; furthermore, right and left derivatives of f exist
everywhere and are equal almost everywhere

d) −∂f/∂T ≥ 0, namely the entropy per site is non-negative

e) ∂f/∂T is monotonically non-increasing with T , namely ∂2f/∂T 2 ≤ 0; this implies, from its
definition, that CH ≥ 0

f) ∂f/∂H is monotonically non-increasing with H , namely ∂2f/∂H2 ≤ 0; this implies, from its
definition, that χT ≥ 0

We shall only prove d); the general strategy is to start from a finite system and then take the
thermodynamic limit.
Proof. d): If we assume the existence of the derivatives, then:

− ∂F

∂T
=

∂

∂T

[
kBT ln

(
Tr e

− H
kBT

)]
=

= kB ln

(
Tr e

− H
kBT

)
+ kBT

1

Tr e
− H
kBT

Tr

(
e
− H
kBT

H
kBT 2

)
=

= kB ln
(

Tr e−βH
)

+ kB
Tr
(
βHe−βH

)
Z

= kB

[
lnZ +

Tr
(
βHe−βH

)
Z

]

If we now define:

ρ =
e−βH

Z
=

e−βH

Tr e−βH

we have:

−∂F
∂T

= −kB Tr(ρ ln ρ)

Now, since by definition 0 < ρ < 1, ln ρ < 0 and thus −∂F/∂T is a sum of positive terms;
therefore −∂F/∂T is positive. Dividing by N and taking the thermodynamic limit we get
−∂f/∂T ≥ 0.

We can even prove something more (we will do it in the particular case of the Ising model):

Theorem. The free energy density f is a concave function of H .

Proof. The proof is based upon the Hölder inequality, which we now recall.
If {gk} and {hk} are two sequences with gk, hk ≥ 0 for all k and α1, α2 ∈ R are such that
α1 + α2 = 1, then: ∑

k

gα1
k hα2

k ≤

(∑
k

gk

)α1
(∑

k

hk

)α2

Let us now consider Z(H) (for simplicity we will write only H as its argument). By definition:

Z(H) = Tr eβH
∑
i Si+βJ

∑
〈ij〉 SiSj = Tr

(
eβH

∑
i SiG[S]

)
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where we have defined G[S] := eβJ
∑
〈ij〉 SiSj . Then we have:

Z(α1H1 + α2H2) = Tr
(
eβα1H1

∑
i Si+βα2H2

∑
i SiG[S]

)
=

= Tr
[(
eβH1

∑
i SiG[S]

)α1
(
eβH2

∑
i SiG[S]

)α2
]
≤
(

Tr eβH1
∑
i Si
)α1

(
Tr eβH12

∑
i Si
)α2

where we have also used the fact that α1 + α2 = 1, and thus:

Z(α1H1 + α2H2) ≤ Z(H1)α1Z(H2)α2

Therefore, taking the logarithm at both sides, multiplying for −kBT and taking the thermody-
namic limit we get:

f(α1H1 + α2H2) ≥ α1f(H1) + α2f(H2)

and so f is indeed a concave function of H .

5.3.3 Absence of phase transitions for finite systems

We now analyse some symmetry properties of the Ising model, which will allow us to show
that for finite systems no phase transition can occur at all.

To begin with, let us note that for any function ϕ of the spin configurations {Si}we have:∑
{Si=±1}

ϕ({Si}) =
∑

{Si=±1}

ϕ({−Si}) ⇒ Trϕ({Si}) = Trϕ({−Si}) (5.3)

which can be “proved” by explicitly writing all the terms11.
Then, we can also see that f is an even function of H . In fact, from the definition of the Hamil-
tonian:

−H = J
∑
〈i,j〉

SiSj +H
∑
i

Si

it is immediate to see that:

H(H,J, {Si}) = H(−H,J, {−Si}) (5.4)

Therefore, using (5.3) and then (5.4):

Z(−H,J, T ) = Tr e−βH(−H,J,{Si}) = Tr e−βH(−H,J,{−Si}) = Tr e−βH(H,J,{Si}) = Z(H,J, T )

If we now take the logarithm on both sides and multiply by −kBT , we have:

F (H,J, T ) = F (−H,J, T )

namely, the free energy is an even function of H .
This implies that the system (note that we have never taken the thermodynamic limit, so its
size is still finite) can never exhibit a spontaneous magnetization when H = 0, and so there are
no phase transitions at all (the system will always remain in its paramagnetic phase). In fact,
we have:

M(H) = − ∂

∂H
F (H) = − ∂

∂H
F (−H) =

∂

∂(−H)
F (−H) = −M(−H)

11Very simply, since Si = ±1, when we sum over all possible values of Si we will in both cases cover all the
possibilities for the argument {Si} of ϕ.
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and if H = 0:
M(0) = −M(0) ⇒ M(0) = 0

i.e. the spontaneous magnetization is always null.

Note that this result has been obtained only with the use of symmetry properties, and we
have never resorted to the “traditional” approach of statistical mechanics, namely the explicit
computation of the partition function and subsequently the derivation of the thermodynamics
of the system. This will be done later on.

5.3.4 Ising model and fluids

As we have stated in 5.3.1, the Ising model can also be used to describe systems different from
magnets. The most important example is the correspondence that can be established between
an Ising model and a fluid through a lattice gas model. We will now show how this equivalence
can be defined; in order to do so, we will proceed in two steps: we will first show how an Ising
model is equivalent to a lattice gas, and then show (qualitatively) that this lattice gas model is
equivalent to the classical model for a fluid.
Before doing so, we briefly review the formalism used in classical statistical mechanics in order
to describe fluids (see 3.3.3, for example).

Let us then consider a system of N particles subjected to some generic potentials, so that its
Hamiltonian can be written as:

H =
N∑
i=1

(
~pi

2

2m
+ U1(~ri)

)
+

1

2

∑
i 6=j

U2(~ri, ~rj) +
1

3!

∑
i 6=j 6=k

U3(~ri, ~rj , ~rk) + · · ·

where Un is an n-body potential, which generally depends only on the distances between the
particles if it involves two or more of them.
Working in the grand canonical ensemble, the grand partition function will be:

Z = Tr e−β(H−µN)

where12:

Tr =
∞∑
N=0

1

N !

∫ N∏
i=1

1

hdN
dd~rid

d~pi

(h is the Planck constant, and d the dimensionality of the system13). It is convenient to separate
the contributes of to the kinetic and configurational terms:

Z =
∞∑
N=0

1

N !

(∫ N∏
i=1

dd~pi
hdN

e−β
~pi

2

2m

)(∫ N∏
i=1

dd~rie
−β({U}−µN)

)
where with {U}we mean all the possible potentials acting on the system. However (see, again,
3.3.3) we have: ∫

dd~p

hd
e−β

~p2

2m = Λ(T )−d Λ(T ) =
h√

2πmkBT

where Λ(T ) is the thermal wavelength. Therefore:

Z =

∞∑
N=0

1

N !

(
eβµ

Λ(T )d

)N
QN

12This of course is valid for classical mechanics, but the correspondence we will establish holds also in quantum
statistical mechanics.

13The only big difference with 3.3.3 is that we are considering d generic instead of equal to 3.
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where:

QN =

∫ N∏
i=1

dd~rie
−β{U}

The grand free energy is thus14:

F(T, µ, {U}) = −kBT lnZ

and as usual the thermodynamic limit of F is defined as:

f(T, µ, {U}) = lim
V→∞

F
V

with the constraint:

ρ = lim
V→∞

〈N〉
V

= const.

Ising model and lattice gas

The basic idea of the lattice gas model is to describe a fluid where the particles are located on
the sites of a lattice instead of continuously occupying any position in space; it is a sort of “dis-
cretization” of the classical description of fluids. The correspondence with the Ising model is
established relating the local density of a fluid with the local magnetization density of an Ising
model.

Let us therefore consider a d-dimensional lattice with coordination number z. Each site of the
lattice can be occupied by a particle, so if we call ni the occupation number of a site we will
have either ni = 0 or ni = 1, and the total number of particles will be:

N =

Ns∑
i=1

ni

where Ns is the number of sites. In analogy with the continuum case we can guess a Hamilto-
nian of the form:

H =

Ns∑
i=1

U1(i)ni +
1

2

∑
i 6=j

U2(i, j)ninj + · · ·

where the interaction potential U2 is symmetric, namely U2(i, j) = U2(j, i).
We have written only the configurational term, because we know that the kinetic part always
contributes to the grand partition function with the thermal wavelength.
This way, in the grand canonical ensemble we have:

H− µN =

Ns∑
i=1

(U1(i)− µ)ni +
1

2

∑
i 6=j

U2(i, j)ninj + · · · (5.5)

Considering now an Ising model defined on the same lattice, we can establish a correspondence
with the lattice gas model defining:

ni =
1

2
(1 + Si) (5.6)

14A small remark: for finite and “reasonable” systems the grand free energy is not singular even if it involves an
infinite sum over N . The reason is that generally (in the “reasonable” cases we have just mentioned) the interaction
potentials have a hard-core component that prevents the particles from overlapping: therefore, a finite system will
be able to contain only a finite number of particles, so that the sum has in reality an upper limit and is not infinite.
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where Si is the spin variable of the Ising model defined on the same lattice: in fact, doing so we
have ni = 0 when Si = −1 and ni = 1 when Si = 1.
What we now want to show is that substituting (5.6) into (5.5) we obtain a Hamiltonian that
leads to the grand partition function of the Ising model, so that the equivalence between the
two models is made explicit15.
From now on we will neglect any potential that couples more than two particles; therefore, the
first term of the right-hand side of (5.5) becomes:

Ns∑
i=1

(U1(i)− µ)
1

2
(1 + Si) =

1

2

Ns∑
i=1

(U1(i)− µ) +
1

2

Ns∑
i=1

(U1(i)− µ)Si

while the second term:

1

8

∑
i 6=j

U2(i, j)(1 + Si)(1 + Sj) =
1

8

∑
i 6=j

U2(i, j) +
1

4

∑
i 6=j

U2(i, j)Si +
1

8

∑
i 6=j

U2(i, j)SiSj

(where in the second summation has been obtained relabelling indices and using the symmetry
of U2). If we now suppose that U2 is a nearest-neighbour interaction, i.e.:

U2(i, j) =

{
U2 i and j are nearest neighbours
0 otherwise

then:
1

2

∑
i 6=j

U2(i, j)ninj =
1

8
U2zNs +

1

4
U2z

Ns∑
i=1

Si +
1

8
U2

∑
〈ij〉

SiSj

If we now set U1 = 0 (i.e. there are no external fields acting on the fluid) we have:

1

2

Ns∑
i=1

(U1(i)− µ)ni = −1

2
µNs −

1

2
µ

Ns∑
i=1

Si

Therefore:

H− µN = −µ
2
Ns +

z

8
U2Ns +

(
−µ

2
+
z

4
U2

) Ns∑
i=1

Si +
U2

8

∑
〈ij〉

SiSj

For the sake of simplicity, we set16:

E0 = −µ
2
Ns +

z

8
U2Ns −H = −µ

2
+
z

4
U2 − J =

U2

8
(5.7)

so that:

H− µN = E0 −H
Ns∑
i=1

Si − J
∑
〈ij〉

SiSj

We thus have that the grand partition function of the lattice gas can be written as:

Zl.g. = Tr e−β(H−µN) = Tr e−β(−E0+H
∑
i Si+J

∑
〈ij〉 SiSj) =

= e−βE0 Tr e−β(H
∑
i Si+J

∑
〈ij〉 SiSj) ⇒

15Of course, if two systems have the same partition function, their thermodynamics will coincide, so they are at
all effects equivalent.

16From these definition we see that in reality the precise values of the coefficients 1/4, 1/2, 1/8 that we have
encountered are absolutely irrelevant.
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⇒ Zl.g. = e−βE0ZI.m.

where ZI.m. is the grand partition function of the Ising model.
Therefore, we see that the grand partition functions of both the Ising model and the lattice gas
are equal, except for the irrelevant constant rescaling factor e−βE0 .
This way we can see explicitly that the two models are perfectly equivalent.

Lattice gas and continuous fluids

We now want to show (although not really rigorously) that the lattice gas model can be derived
from the “classical” model of a fluid.
Consider the configurational sum:

QN =

∫ N∏
i=1

dd~rie
−β{U}

We can approximate it dividing our system in Nc cells of linear dimension a, such that the
probability to find more than one particle inside one cell is negligible; in other words, if our
particles interact via a potential that has a hard core component we can take a of the order of
the hard core radius. This way the integral in QN can be rewritten as:

∫ N∏
i=1

dd~ri ≈ adN
Nc∑
α=1

where i labels the particles while α labels the cells.
Since we have focused our attention towards the cells, we can substitute the interactionU2(~ri, ~rj)
between particles with an interaction between occupied cells:

U2(α, β) = U2(~ri, ~rj) if ~ri ∈ α and ~rj ∈ β

As we have done before we consider only two-particle interactions and suppose that the rela-
tive potential is short-ranged, namely U2 acts only between nearest neighbours and in that case
is equal to a constant value U2; therefore:∑

α6=β
U2(α, β)nαnβ = U2

∑
〈αβ〉

nαnβ

where of course nα is the occupation number of the α-th cell.
Now, for each specified configuration of the occupation numbers nα there can be N ! possible
configurations for the positions ~ri: in fact, the configuration {nα} of the occupied cells only tells
us where we can find a particle, but not which specific particle is in a given cell; furthermore, the
system is left unchanged if we interchange the particles. We can thus write:

QN = N !adN
′∑

{nα=0,1}

e−βU({nα})

where
∑′ means that the sum on nα must be subject to the constraint that the total number of

particle be fixed and equal to N :

′∑
{nα=0,1}

=
∑

{nα=0,1}

with
∑
α

nα = N
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Therefore:

Zc.f. =
∞∑
N=0

1

N !

(
eβµ

Λ(T )d

)N
QN =

∞∑
N=0

[
eβµ

(
a

Λ(T )

)d]N ′∑
{nα=0,1}

e−βU({nα})

where “c.f.” stands for “continuum fluid”. The presence of the sum
∑∞

N=0 strongly simplifies
the calculations: in fact, if f(nα) is a generic function, then:

∞∑
N=0

′∑
{nα}

f(nα) =
∑
{nα}

f(nα)

︸ ︷︷ ︸∑
α nα=0

+
∑
{nα}

f(nα)

︸ ︷︷ ︸∑
α nα=1

+ · · ·+
∑
{nα}

f(nα)

︸ ︷︷ ︸∑
α nα=∞

=
∑
nα

f(nα)

where the last sum in unconstrained. Therefore we can write Zc.f. as:

Zc.f. =
∑

{nα=0,1}

[
eβµe

d log a
Λ(T )

]N
e−βU2

∑
〈αβ〉 nαnβ =

∑
{nα=0,1}

e
−β
[
U2
∑
〈αβ〉 nαnβ−

(
µ+ d

β
log a

Λ(T )

)
N
]

namely:
Zc.f. = Tr e−β(H−µN) = Zl.g.

where Zl.g. is the grand partition function of the lattice gas model, while:

µ = µcl. +
d

β
log

a

Λ(T )

and µcl. is the “classical” chemical potential. However, since the chemical potential has the
meaning of an energy, any shift in µ by a constant quantity17 is physically irrelevant, so µ and
µcl. are equivalent18.
Therefore, the grand partition functions of the continuum fluid and the lattice gas model are
the same: we thus see that these two models are equivalent.

5.3.5 Ising model and the ideal gas

When we have discussed the relation of the Ising model with lattice gases, we have included
the interactions between spins (or equivalently particles), so in the end the Ising model could
be used to describe non-ideal fluids.
What we now want to show is that the Ising model in the non interacting case (which could
seem not really interesting at first) is equivalent to the ideal gas.

We start of course from what we have seen in the case of a generic lattice gas:

Zl.g. = e−βE0ZI.m.

where (in the case of a square lattice, for which we know that z = 2d):

−E0 =

(
2

µ
− U2d

4

)
N

and we have renamed Ns with N . From (5.7) we can rewrite E0 as:

E0 = −N
(
H +

U2

4
d

)
17Remember that our system is at fixed temperature, so T is constant.
18Equivalently, we can also note that eβµN = eβµNedN log(a/Λ), so Zc.f. = edN log(a/Λ)Zl.g.: the grand partition

functions of the fluid and the lattice gas differ for a constant rescaling factor, similarly to what we have seen before.
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Since we are working in the grand canonical ensemble, we have19 Zl.g. = e−βΦ = eβPN and so:

P = −E0

N
+

1

βN
lnZI.m. = H +

U2

4
d+

1

βN
lnZI.m.

which, in the non interacting case (U2 = 0), reduces to:

P = H +
1

βN
lnZI.m

The partition function of a non interacting Ising model is:

ZI.m. =
∑

{Si=±1}

eh
∑
i Si

where as usual h = βH . This can be computed easily:

ZI.m. =
∑
S1=±1

· · ·
∑

SN=±1

ehS1 · · · ehSN =
N∏
i=1

(∑
S=±1

ehS

)
= (2 coshh)N

and thus:
lnZI.m.

N
= ln (2 coshh)

If we now call 〈N〉 the mean number of spins of the system, what we want to do is to relate P
with the density 〈N〉 /N .
Similarly to what we have done for the lattice gas, we define ni = (1+Si)/2 to be the occupation
number of the i-th cell of the system. This way, the mean number of particles is:

〈N〉 =

〈∑
i

1 + Si
2

〉
=
N

2
+

1

2

〈∑
i

Si

〉

but: 〈∑
i

Si

〉
=

∑
{S} e

h
∑
i Si
∑

j Sj∑
{S} e

h
∑
i Si

=
1

ZI.m

∂ZI.m

∂h
=
∂ lnZI.m

∂h

Therefore:

v−1 :=
〈N〉
N

=
1

2

(
1 +

1

N

∂ lnZI.m

∂h

)
=

1

2
(1 + tanhh)

However, we can also define the mean “magnetization” per spin of the system as:

m :=

〈
1

N

∑
i

Si

〉
=

1

N

∂ lnZI.m

∂h

We therefore have v−1 = (1 +m)/2, and we can also rewrite:

1

N
lnZI.m = ln 2 +

1

2
ln cosh2 h = ln 2 +

1

2
ln

cosh2 h

cosh2 h− sinh2 h
= ln 2− 1

2
ln(1−m2)

where we have used two “tricks”: first, we have written coshh =
√

cosh2 h and then divided
by cosh2 h− sinh2 h = 1. This way:

P =
h

β
+

1

β

[
ln 2− 1

2
ln(1−m2)

]
19The “volume” of our system is now the number of spins N .
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and since h = tanh−1m = 1
2 ln 1+m

1−m , this can be rewritten as:

P = − 1

β
ln

1−m
2

= − 1

β
ln(1− v−1)

If our gas is dilute, i.e. v−1 ≈ 0, we can expand the logarithm and get:

P ∼ v−1

β
=
〈N〉
N

kBT

which is the ideal gas law (since N is the volume of our system)!

5.3.6 Ising model and binary alloys

The Ising model can be also used to described systems composed of different kinds of particles,
like binary alloys.
What we now want to see is that, similarly to what happened in 5.3.4 for the lattice gas, the
Hamiltonian of a binary alloy can be mapped into the Hamiltonian of an Ising model.

Consider a lattice with coordination number z, and suppose that on every site of this lattice
there can be an atom of two possible different elements, sayA andB, and that they can “move”
(i.e. exchange their positions) on the lattice20.
Let us call −EAA and −EBB (writing explicitly the negative sign) the interaction energies be-
tween neighbouring atoms of the same elements, respectivelyA andB; similarly, we call−EAB
the interaction energy of neighbouring atoms of different kinds.
Let us also call:

– NAA, NBB the number of A-A and B-B bonds

– NAB the number of A-B bonds

– NA, NB the numbers of A and B atoms

– N = NA +NB the total number of atoms

This way, the energy of the system will be:

E = −EAANAA − EABNAB − EBBNBB

However, NAA, NBB and NAB are not independent.
Let us in fact consider all the A atoms of our system: we have that every A-A bond contributes
to NA with two atoms and every A-B bond with a single A atom. If we add these numbers we
have z times the total number of A atoms, i.e.:

2NAA +NAB = zNA

and similarly:
2NBB +NAB = zNB

The fact that these sums are z times equal toNA orNB is better understood if explicitly verified
in simple cases. Check for example that this is true in the following two-dimensional case

20This happens, for example, in β-brasses: at temperatures lower than approximately 733◦C the atoms are ar-
ranged in a body-centered cubic lattice, with zinc atoms occupying the center of the copper cubes; if the temprature
is raised then zincs and coppers freely exchange.
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(assuming periodic boundary conditions):

A B A A B
B A A B B
A B A A B
B A B B B
B A A B A

If we now solve these last two equations, expressing everything in terms of NA and NAA we
get:

NB = N −NA NBB = NAA + (N − 2NA)
z

2
NAB = zNA − 2NAA

and thus the energy of the system can be rewritten as:

−E = NAA(EAA + EBB − 2EAB) + zNA(EAB − EBB) +
zN

2
EBB

Now, in order to establish a correspondence with the Ising model, similarly to what we have
done for the lattice gas, we can define a site variable ni which represents if an A or B atom is
occupying the i-th site. We define ni such that ni = 1 when an A atom is present while ni = 0
when a B atom is present in the site; this way, we can map this system into an Ising model
setting (just like before21):

ni =
1 + Si

2

Therefore:
NA =

∑
i

ni =
∑
i

1 + Si
2

NAA =
∑
〈ij〉

1 + Si
2

1 + Sj
2

Computing the sums just like we have done for the lattice gas, we have:

NA =
N

2
+

1

2

∑
i

Si NAA =
1

4

∑
〈ij〉

SiSj +
z

2

∑
i

Si +
zN

8

Thus, the energy of the system can be rewritten as:

− E = J
∑
〈ij〉

SiSj + h
∑
i

Si + CN (5.8)

where:

J =
1

4
(EAA+EBB−2EAB) h =

z

4
(EAA−EBB) C =

z

8
(EAA+EBB+2EAB)

The energy (5.8) has again the same for of the Hamiltonian of the Ising model, apart from the
irrelevant constant shift CN .
Therefore, the partition functions of the Ising model and the binary alloy are perfectly equiva-
lent.

5.3.7 Ising model and neural networks

Another kind of systems that can be described in terms of the Ising model are neural networks:
in this case every site of the lattice represents a neuron and the interaction bonds are synapses;
the two possible states of the neurons are “firing” (i.e. transmitting an electric pulse) when
Si = +1 and “not firing” when Si = −1. In this case, however, the system is dynamic and not
static so the situation is much more complicated, and the tools we are developing are not really
useful in order to understand something interesting about the system.

21From this definition we can guess that from now on we can do exactly what we have seen for the lattice gas.
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5.3.8 Final remark on equivalence in statistical mechanics

The analysis that we have just carried out has shown an equivalence between physical models.
In statistical mechanics, the term equivalence can be used with two different “nuances”:

exact equivalence: this means that there is an exact mapping between the partition functions
of two different models

approximate equivalence: this means that the partition functions of two models are not related
by an exact mapping, but nevertheless they behave in exactly the same way near a critical
point. Such models are said to belong to the same universality class.

Apart from the equivalence between the Ising model and neural networks, all the correspon-
dences we have shown are exact.

5.4 Ising model in one dimension

We will now proceed to study the thermodynamic properties of a one-dimensional Ising model.
In this case, as we will shortly see, we will be able to compute exactly the partition function
of the system using different methods; therefore, we will be able to determine exactly all the
thermodynamic properties of the system.

5.4.1 Bulk free energy, thermodynamic limit and absence of phase transitions

Let us therefore consider a one-dimensional Ising model with N spins and free boundary con-
ditions, i.e. the first and the last spin can assume any value. Using the nearest neighbour
interaction Hamiltonian we have:

−H = H
∑
i

Si + J
∑
〈ij〉

SiSj

and defining h = βH andK = βJ for the sake of simplicity, the partition function of the system
will be:

ZN = Tr e−βH =
∑

{Si=±1}

eh
∑
i Si+K

∑
i SiSi+1

If we now set h = 0, namely if the system is not subjected to any external field, then:

ZN =
∑

{Si=±1}

eK
∑
i SiSi+1 =

∑
S1=±1

· · ·
∑

SN=±1

eKS1S2+···+KSN−1SN

In order to compute ZN we use the so called recursion method: from the expression of ZN we can
deduce the expression of the partition function ZN+1 of the same system with one additional
spin added to the lattice:

ZN+1 =
∑
S1=±1

· · ·
∑

SN=±1

∑
SN+1=±1

eK(S1S2+···+SN−1SN )eKSNSN+1

However, the sum over SN+1 gives:∑
SN+1=±1

eKSNSN+1 = eKSN + e−KSN = 2 cosh(KSN ) = 2 coshK

where we have used the evenness of the hyperbolic cosine, namely the fact that cosh(±x) =
coshx. Therefore we have:

ZN+1 = ZN · 2 coshK



110 CHAPTER 5. STATISTICAL MECHANICS OF PHASE TRANSITIONS

and iterating the relation N times we get:

ZN+1 = Z1(2 coshK)N ⇒ ZN = Z1(2 coshK)N−1

Since22:
Z1 =

∑
S1=±1

1 = 1 + 1 = 2

we get the final result:
ZN = 2(2 coshK)N−1

Now, following all the prescriptions we know, we get to:

F (T ) = −kBT
[
ln 2 + (N − 1) ln

(
2 cosh

J

kBT

)]
(5.9)

and in the thermodynamic limit:

f(T ) = −kBT ln

(
2 cosh

J

kBT

)
(5.10)

Let us note that f does indeed respect the properties we have seen in 5.3.2. Furthermore, since
the logarithm and the hyperbolic cosine are analytic functions we see that f(T ) is itself an
analytic function of T : it is therefore impossible that the system will exhibit any kind of phase
transition (at least for T 6= 023) even in the thermodynamic limit.

5.4.2 Irrelevance of boundary conditions

We can wonder what happens if we change the boundary conditions: since they affect only
a small part of the system we expect that as long as the system is finite we can observe some
differences if we choose different boundary conditions, but as soon as we take the thermody-
namic limit these differences become irrelevant.
As an example let us compute again ZN but with periodic boundary conditions, i.e. the first
and the last spin are coupled (this can be visually interpreted as “closing” our system in a circle,
connecting the first and last spins). In this case we have:

ZN =
∑
S1=±1

· · ·
∑

SN=±1

eK(S1S2+···SN−1SN )eKSNS1

In order to compute this partition function we use another “trick”; we define the variables:

ηi =

{
1 if Si = Si+1

−1 if Si = −Si+1

and set η0 = S1. This way, we can substitute SiSi+1 with ηi and since S2
i = 1 we can also write:

SNS1 = SNSN−1SN−1SN−2 · · ·S2S1 = η1η2 · · · ηN−1

Therefore, the partition function in terms of ηi becomes:

ZN =
∑
η0=±1

· · ·
∑

ηN−1=±1

eK(η1+···+ηN−1)eKη1···ηN−1

22This can be justified as follows: Z1 is the partition function of a single-spin Ising model and we are considering
two-spin interactions, so this single spin will not interact with anything. Therefore the Hamiltonian of the system
in this case is null, and so e−βH = e0 = 1.

23In this case, in fact, there can be problems. From this fact we can state that the only “phase transition” that can
happen in a one-dimensional Ising model occurs at T = 0 (which is of course an unphysical case), where all the
spins are aligned.
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Now, summing over η0 and rewriting eKη1···ηN−1 with the definition of exponential series:

ZN = 2
∑
η=±1

· · ·
∑

ηN−1=±1

eK(η1+···+ηN−1)
∞∑
α=0

1

α!
(Kη1 · · · ηN−1)α =

= 2
∞∑
α=0

Kα

α!

∑
η=±1

ηαeKη

N−1

= 2
∞∑
α=0

Kα

α!

[
eK + (−1)αe−K

]N−1
=

= 2

[
(eK + e−K)N−1 +K(eK − e−K)N−1 +

K2

2!
(eK + e−K)N−1 +

K3

3!
(eK − e−K)N−1 + · · ·

]
=

= 2

[
2N−1(coshK)N−1

(
1 +

K2

2!
+
K4

4!
+ · · ·

)
+ 2N−1(sinhK)N−1

(
K +

K3

3!
+
K5

5!
+ · · ·

)]
=

= 2N (coshK)N−1 coshK + 2N (sinhK)N−1 sinhK

Therefore:
ZN = (2 coshK)N + (2 sinhK)N

and the finite-size free energy is:

F (T ) = −kBTN

{
ln

(
2 cosh

J

kBT

)
+

1

N
ln

[
1 +

(
tanh

J

kBT

)N]}
which is different from (5.9), and as we have already stated this is due to the fact that the system
we are considering is still finite-sized. If we now take the thermodynamic limit we will have:

f(T ) = −kBT ln

(
2 cosh

J

kBT

)
− kBT lim

N→∞

1

N
ln

[
1 +

(
tanh

J

kBT

)N]
The last limit, however, is null: in fact tanhx < 1 for any x and so as N grows (tanhx)N goes
to zero, so a fortiori (tanhx)N/N vanishes as N →∞. Therefore:

f(T ) = −kBT ln

(
2 cosh

J

kBT

)
which is exactly (5.10).

Since, as expected, the boundary conditions do not affect the properties of macroscopic systems
and their effect on finite systems are very small, when we are studying a model we can choose
the one we prefer and which makes calculations easier.

5.4.3 Absence of spontaneous magnetization

Let us now come back to free boundary conditions and compute the mean magnetization 〈Sj〉
of a given site j. By definition we have24:

Z 〈Sj〉 = Tr
(
Sje
−βH

)
=

∑
{Si=±1}

Sje
K
∑N−1
i=1 SiSi+1 =

∑
{Si=±1}

N−1∏
i=1

Sje
KSiSi+1

24Note that the sum on nearest neighbour is done without counting the same terms twice (as we have already
stressed). In fact, in our case every spin Si interacts with its nearest neighbours Si−1 and Si+1, but the sum in the
trace involves every two-spin interaction only once.
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We now use the fact that ex = coshx+ sinhx, so that in this case:

eKSiSi+1 = coshK + SiSi+1 sinhK

where we have used (like we have done previously) the evenness of cosh, and now also the
oddness of sinh, i.e. sinh(±x) = ± sinhx. This way:

Z 〈Sj〉 =
∑

{Si=±1}

N−1∏
i=1

Sj (coshK + SiSi+1 sinhK) =

= (coshK)N−1
∑

{Si=±1}

N−1∏
i=1

Sj (1 + SiSi+1 tanhK) =

= (coshK)N−1
∑
S1=±1

· · ·
∑

SN=±1

Sj(1+S1S2 tanhK)(1+S2S3 tanhK) · · · (1+SN−1SN tanhK) =

= (coshK)N−1
∑
S1=±1

· · ·
∑

SN=±1

[
Sj +

N−1∑
M=1

SjSi1Si1+1Si2Si2+1 · · ·SiMSiM+1(tanhK)M

]

where Si1 etc. are the spin variables appropriately rearranged25.
Let us now consider the two different contributions to 〈Sj〉. As of the first:∑

S1=±1

· · ·
∑

SN=±1

Sj = 2N−1
∑
Sj=±1

Sj = 2N−1(1− 1) = 0

Considering now the second one:

∑
S1=±1

· · ·
∑

SN=±1

N−1∑
M=1

SjSi1Si1+1Si2Si2+1 · · ·SiMSiM+1(tanhK)M

we have that for every fixed M this term vanishes; for example, if we consider the contribution
relative to a fixed value M∗ of M and sum (for example) over Si1 we have:

Sj · (+1) · Si1+1Si2Si2+1 · · ·SiM∗SiM∗+1(tanhK)M
∗
+

+ Sj · (−1) · Si1+1Si2Si2+1 · · ·SiM∗SiM∗+1(tanhK)M
∗

= 0

Therefore, also the second term vanishes and in the end:

〈Sj〉 = 0

This result perfectly agrees with what we have already seen in 5.3.3, but now it has been de-
duced from a direct computation.

5.4.4 The transfer matrix method

The method we have just seen is an ad hoc solution that works only in this case, and it would
be rather difficult to extend it in the presence of an external field. A more general method that

25The form of this last term can be understood more easily doing an explicit computation with a simple example.
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allows us to extend our considerations also when h 6= 0 and to compute other interesting prop-
erties is the so called transfer matrix method, which basically consists in defining an appropriate
matrix related to the model such that all the thermodynamic properties of the system can be
extracted from the eigenvalues of this matrix.
We are going to see this method applied to the one-dimensional Ising model, but its validity is
completely general; we will stress every time if we are stating general properties of the transfer
matrix method or restricting to particular cases.

The Hamiltonian of a one-dimensional Ising model with periodic boundary conditions when
an external field is present is such that:

−βH = K(S1S2 + · · ·+ SN−1SN + SNS1) + h

N∑
i=1

Si

where βH is sometimes called reduced Hamiltonian.
We now rewrite the partition function in the following “symmetric” way:

ZN =
∑
S1=±1

· · ·
∑

SN=±1

[
eKS1S2+h

2
(S1+S2)

] [
eKS2S3+h

2
(S2+S3)

]
· · ·
[
eKSNS1+h

2
(SN+S1)

]
If we therefore define the transfer matrix T such that26:

〈S|T |S′〉 = eKSS
′+h

2
(S+S′)

we can write ZN as a product of the matrix elements of T :

ZN =
∑
S1=±1

· · ·
∑

SN=±1

〈S1|T |S2〉〈S2|T |S3〉 · · · 〈SN |T |S1〉 (5.11)

If we now choose |Si〉 so that they are orthonormal, i.e.:

|+1〉 =

(
1
0

)
|−1〉 =

(
0
1

)
then an explicit representation of T is:

T =

(
eK+h e−K

e−K eK−h

)
(5.12)

Note that the matrix elements of T are in one-to-one correspondence with the spin variables,
and that the dimension of the transfer matrix depends on the number of possible values that
they can assume.
Now, since the vectors |Si〉 are orthonormal we have:∑

Si=±1

|Si〉〈Si| = I

where I is the identity matrix, and (5.11) becomes:

ZN =
∑
S1=±1

〈S1|TN |S1〉 = TrTN

This is the general purpose of the transfer matrix method: being able to write the partition
function of a system as the trace of the N -th power of an appropriately defined matrix (the

26We symbolically use Dirac’s bra-ket notation.
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transfer matrix).
Now, the trace can be easily computed if we diagonalize T ; if we call TD the diagonalization
of the transfer matrix we will have:

TD = P−1TP

where P is an invertible matrix whose columns are the eigenvectors of T . Since P−1P = I, the
partition function becomes:

ZN = TrTN = Tr(P P−1TPP−1 · · ·P−1TP︸ ︷︷ ︸
N times

P−1) = Tr
(
PTNDP

−1
)

and using the cyclic property of the trace27 we get:

ZN = Tr
(
TNDP

−1P
)

= TrTND

In the case of the one-dimensional Ising model we are considering TD is a 2 × 2 matrix so it
will have two eigenvalues which we call λ+ and λ−, with the convention λ+ > λ− (we could
in principle also consider the case λ+ = λ−, but we will shortly see why this is not necessary).
We will therefore have:

ZN = λN+ + λN−

In general, if T is a (n + 2) × (n + 2) matrix whose eigenvalues are λ+ > λ− > λ1 > · · · > λn
we will have:

ZN = λN+ + λN− +

n∑
i=1

λNi (5.13)

Let us note that the dimension of the transfer matrix can increase if we consider interactions
with longer ranges or if we allow the spin variables to assume more than one value28, and
clearly the larger the matrix the harder its eigenvalues are to be computed, but the principle is
always the same.

We will now use the transfer matrix in order to compute some interesting properties of a generic
system.

Free energy

Considering a general situation, the partition function of a model can be written with the use
of the transfer matrix as in (5.13). Therefore, in the thermodynamic limit the free energy of the
system will be:

f = −kBT lim
N→∞

1

N
lnZN = −kBT lim

N→∞

1

N
ln

[
λN+

(
1 +

λN−
λN+

+
n∑
i=1

λNi
λN+

)]

Since λ+ > λ− > λi we have:(
λ−
λ+

)N
N→∞−→ 0

(
λi
λ+

)N
N→∞−→ 0

and therefore:
f = −kBT lnλ+

27Namely, Tr(ABC) = Tr(BCA) = Tr(CAB).
28In this case (which will be studied later on, see 6.3.2) the model is called Potts model; if the spin variables can

assume q different values, then the transfer matrix of a one-dimensional Potts model will be q × q.
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This is an extremely important result, since this means that the entire thermodynamics of the
system can be obtained by only knowing the largest eigenvalue of the transfer matrix29.
Furthermore, the fact that only λ+ is involved in the expression of the free energy in the ther-
modynamic limit has a very important consequence on the possibility for phase transitions to
occur. In fact, there exists a theorem called Perron-Frobenius theorem in linear algebra which
states the following:

Theorem (Perron-Frobenius). IfA is an n×n square matrix (with n finite) such that all its elements
are positive, namely Aij > 0 ∀i, j, then the eigenvalue λ+ with largest magnitude is:

1. real and positive

2. non-degenerate

3. an analytic function of the elements Aij

We omit the proof of this theorem.

This means that if the transfer matrix of a model satisfies such properties, since λ+ is an ana-
lytic function the system will never exhibit phase transitions because also f will be analytic.

For the one-dimensional Ising model with nearest neighbour interaction that we are consider-
ing, these properties are satisfied and so we have:

1. λ+ 6= 0, so that f is well defined

2. λ+ 6= λ− (this justifies a posteriori why we have considered λ+ 6= λ− from the beginning)

3. λ+ is analytic, and therefore so is f

From the last fact we deduce that no phase transition can occur for T 6= 0; if T = 0 some of the
elements of T diverge and Perron-Frobenius theorem can’t be applied30.

In general, in higher dimensions or with different kinds of interactions the transfer matrix
can become infinite-dimensional in the thermodynamic limit: in this case the assumptions of
Perron-Frobenius theorem don’t hold and so the system can actually exhibit phase transitions
(since λ+ is not necessarily an analytic function any more).

Correlation function and correlation length

The transfer matrix method can also be used to compute the correlation function and so the
correlation length of a system.
As we know (see 5.1.2) in order to do that we first have to compute the two-point correlation
function.

The connected correlation function of two spins which are at R sites of distance is defined as:

GR = 〈S1SR〉 − 〈S1〉 〈SR〉

where we have considered the first and the R-th spins because we are assuming periodic
boundary conditions (so our choice is equivalent to considering two generic spins at sites i

29This is a blessing also from a computational point of view: it often happens, in fact, that the exact expression of
the transfer matrix can be obtained but it is too big or complicated to diagonalize completely. There are however
several algorithms that allows one to compute only the largest eigenvalue of the matrix in a rather efficient way.

30This agrees with what we have noted in 5.4.1 about the fact that a “phase transition” occurs in the one-
dimensional Ising model for T = 0.
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and i + R). For very large distances, we know that the correlation function decays exponen-
tially, namely GR ∼ e−R/ξ for R → ∞, where ξ is the correlation length. Therefore we can
define the correlation length ξ of the system as:

ξ−1 = lim
R→∞

(
− 1

R
lnGR

)
We begin by computing 〈S1SR〉; this is the thermodynamic limit of the quantity:

〈S1SR〉N =
1

ZN

∑
{Si=±1}

S1SRe
−βH

Using the same factorization of the Hamiltonian that we have previously seen and that led to
equation (5.11), we have:

〈S1SR〉N =
1

ZN

∑
{Si=±1}

S1〈S1|T |S2〉〈S2|T |S3〉 · · · 〈SR−1|T |SR〉SR〈SR|T |SR+1〉 · · · 〈SN |T |S1〉 =

=
1

ZN

∑
S1,SR

S1〈S1|TR|SR〉SR〈SR|TN−R|S1〉

Now, we can write:
T =

∑
i

|ti〉λi〈ti|

where |ti〉 are the eigenvectors of T and λi their relative eigenvalues (again ordered so that
λ+ > λ− > λ1 > · · · ); this way since these eigenvectors are orthonormal we also have:

T n =
∑
i

|ti〉λni 〈ti|

Therefore:

〈S1SR〉N =
1

ZN

∑
S1,SR

∑
i,j

S1〈S1|ti〉λRi 〈ti|SR〉SR〈SR|tj〉λN−Rj 〈tj |S1〉 (5.14)

Now, we introduce the matrices:
Si =

∑
Si

|Si〉Si〈Si|

which are diagonal matrices such that on their diagonal there are all the possible spin values at
the i-th site. This way, moving 〈tj |S1〉 at the beginning of the sum in equation (5.14) (since it is
simply a number) and summing over S1 and SR we get:

〈S1SR〉N =
1

ZN

∑
i,j

〈tj |S1|ti〉λRi 〈ti|SR|tj〉λN−Rj

and using the expression of ZN given by equation (5.13):

〈S1SR〉N =

∑
i,j〈tj |S1|ti〉λRi 〈ti|SR|tj〉λ

N−R
j∑

k λ
N
k

Multiplying and dividing by λN+ we get:

〈S1SR〉N =

∑
i,j〈tj |S1|ti〉(λi/λ+)R〈ti|SR|tj〉(λj/λ+)N−R∑

k(λk/λ+)N
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In the thermodynamic limit the surviving terms are those containing λj = λ+ and λk = λ+,
and also all the terms with λi (because they are not affected by the limit in N ), so:

〈S1SR〉 = lim
N→∞

〈S1SR〉N =
∑
i

(
λi
λ+

)R
〈t+|S1|ti〉〈ti|SR|t+〉 =

(5.15)

= 〈t+|S1|t+〉〈t+|SR|t+〉+
∑
i 6=+

(
λi
λ+

)R
〈t+|S1|ti〉〈ti|SR|t+〉

where we have used the symbolic notation “i 6= +” in the sum to indicate that we are excluding
the case λi = λ+.

What we now want to show is that:

〈Si〉 = lim
N→∞

〈Si〉N = 〈t+|Si|t+〉

Considering Si = SR and proceeding like we have done for 〈S1SR〉N , we get to:

〈SR〉N =
1

ZN

∑
{Si=±1}

SRe
−βH =

1

ZN

∑
S1,SR

〈S1|TR|SR〉SR〈SR|TN−R|S1〉 =

=
1

ZN

∑
S1,SR

∑
i,j

〈tj |S1〉〈S1|ti〉λRi 〈ti|SR〉SR〈SR|tj〉λN−Rj =

1

ZN

∑
i,j

〈tj |ti〉︸ ︷︷ ︸
δij

λRi 〈ti|SR|tj〉λN−Rj

and again, using equation (5.13) and multiplying and dividing by λ+:

〈SR〉N =

∑
i(λi/λ+)R〈ti|SR|ti〉(λi/λ+)N−R∑

k(λk/λ+)N
=

∑
i(λi/λ+)N 〈ti|SR|ti〉∑

k(λk/λ+)N

Again, the only surviving term in the thermodynamic limit is that with λi = λk = λ+, so
indeed:

〈SR〉 = lim
N→∞

〈SR〉N = 〈t+|SR|t+〉

This way, equation (5.15) becomes:

〈S1SR〉 = 〈S1〉 〈SR〉+
∑
i 6=+

(
λi
λ+

)R
〈t+|S1|ti〉〈ti|SR|t+〉

and thus the connected correlation function is:

GR =
∑
i 6=+

(
λi
λ+

)R
〈t+|S1|ti〉〈ti|SR|t+〉

If we now take the limit R → ∞ the leading term will be that with the largest possible eigen-
value λi, i.e. λ− and all the other will vanish. Therefore:

GR
R→∞∼

(
λ−
λ+

)R
〈t+|S1|t−〉〈t−|SR|t+〉
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and thus the correlation length will be such that:

ξ−1 = lim
R→∞

(
− 1

R
ln

[(
λ−
λ+

)R
〈t+|S1|t−〉〈t−|SR|t+〉

])
= ln

λ+

λ−

(since 〈t+|S1|t−〉 and 〈t−|SR|t+〉 are just numbers). Therefore:

ξ =

(
ln
λ+

λ−

)−1

Explicit computations for the one-dimensional Ising model

We now want to apply what we have just shown in order to do some explicit computations on
the one-dimensional Ising model.
We have seen (equation (5.12)) that the explicit expression of the transfer matrix for the one-
dimensional Ising model is:

T =

(
eK+h e−K

e−K eK−h

)
Its eigenvalues can be determined, as usual, solving the equation det(T −λI) = 0, which yields:

λ± = eK
(

coshh±
√

sinh2 h+ e−4K
)

Thus, the free energy of the system in the thermodynamic limit is:

f(K,h) = −J − kBT ln
(

coshh+
√

sinh2 h+ e−4K
)

while its magnetization (remembering that h = βH) is:

m = − ∂f
∂H

= − 1

kBT

∂f

∂h
=

sinhh+ sinhh coshh√
sinh2 h+e−4K

coshh+
√

sinh2 h+ e−4K
=

sinhh√
sinh2 h+ e−4K

Let us note that for H → 0 at fixed T , since sinhh = sinh(βH) → 0 then m vanishes: this is
again the expression that the Ising model in one dimension does not exhibit phase transitions.
Furthermore we can see that in the limit T → 0, namely β → ∞, we have h,K → ∞ and thus
m→ 1: again,the only value of the temperature for which the unidimensional Ising model with
nearest-neighbour interactions exhibits a spontaneous magnetization is T = 0.

The isothermal susceptibility of the system is:

χT =
∂m

∂H
=

1

kBT

∂m

∂h

Instead of explicitly calculating χT for h generic, since we are interested in the behaviour of m
when there are no external fields let us see what happens for small values of h. Since in this
case sinhh ∼ h we have:

m ∼ h√
h2 + e−4K

∼ h

e−2K
= he2K

and therefore:

χT ∼
e2K

kBT

For high and low temperatures, we get:

χT
T→∞∼ 1

kBT
χT

T→0∼ e
2J
kBT

kBT
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and as we can see χT diverges exponentially for T → 0; this agrees with the fact that (as al-
ready previously stated) for T → 0 some elements of the transfer matrix diverge and thus the
Perron-Frobenius theorem can’t be applied.

Considering now the correlation length, we have:

ξ−1 = − ln

(
coshh−

√
sinh2 h+ e−4K

coshh+
√

sinh2 h+ e−4K

)

In the particular case H = 0:

ξ−1
H=0 = − ln

1− e−2K

1 + e−2K
= − ln

1

cotanhK
⇒ ξH=0 =

1

ln(cotanhK)

Now, in the limit T → 0, namely K →∞, the following asymptotic expansion holds:

cotanhK ∼ 1 + 2e−2K +O(e−4K)

Therefore:

ξH=0 ∼
1

ln(1 + 2e−2K)
∼ 1

2e−2K
=
e

2J
kBT

2

and so again we find an exponential divergence for T → 0.
On the other hand, for T →∞, namely K → 0:

tanhK ∼ 1 +K2

K
⇒ ln(tanhK) ≈ − lnK + ln(1 +K2)

K→0∼ − lnK

Thus:
ξH=0 ∼ −

1

lnK
⇒ ξH=0

K→∞−→ 0

as expected31.

5.5 A slightly trickier system: the Heisenberg model

We can now apply the transfer matrix method to a more complicated system, the so called
Heisenberg model. This model is identical to the Ising one with the exception that this time the
spin variables can assume vectorial values instead of being discrete scalars. In other words the
degrees of freedom of the system will be N vectors ~Si, each residing on a site of the lattice and
with unitary module, namely |~Si| = 1.
If there is no external field32, i.e. H = 0, then the reduced Hamiltonian of a one-dimensional
Heisenberg model is:

−βH = K
∑
i=1

~Si · ~Si+1

and with periodic boundary conditions (~SN+1 = ~S1):

ZN =
∑
{~Si}

eK
∑N
i=1

~Si·~Si+1 =
∑
{~Si}

eK
~S1·~S2eK

~S2·~S3 · · · eK~SN ·~S1 = TrTN

31Remember that in general correlation lengths are negligible for large temperatures and become relevant near a
critical point.

32We consider this particular case because otherwise we can’t apply the transfer matrix method.
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where the transfer matrix T is such that:

〈~Si|T |~Si+1〉 = eK
~Si·~Si+1

Also in this case the transfer matrix can be written in the form:

T =
∑
i

λi|ti〉〈ti|

so that, for example:

〈~S1|T |~S2〉 = eK
~S1·~S2 =

∑
i

λi〈~S1|ti〉〈ti|~S2〉 =
∑
i

λifi(~S1)f∗i (~S2)

where fi(~Sj) = 〈~Sj |ti〉 is in general a complex function.

Now, in order to determine the eigenvalues λi we must use the fact (which we will not prove)
that plane waves e−i~r·~k can be decomposed in spherical harmonics Y`m in this way:

e−i~r·
~k = 4π

∞∑
`=0

∑̀
m=−`

i`j`(|~k||~r|)Y ∗`m(k̂)Y`m(r̂)

where j` are the spherical Bessel functions:

j`(xy) = − i
`

2

∫ π

0
sin θeixy cos θP`(cos θ)dθ

and P`(cos θ) is the `-th order Legendre polynomial.
In this case, setting ~r = ~S1 and ~k = ~S2 we get:

ek
~S1·~S2 = 4π

∞∑
`=0

∑̀
m=−`

i`j`(−iK)Y ∗`m(~S1)Y`m(~S2)

This suggests that the eigenvalues have the form:

λ`m(K) = 4πi`j`(−iK)

(which actually doesn’t depend on m). Therefore, the partition function is:

ZN = TrTN =

∞∑
`=0

∑̀
m=−`

λ`m(K)N =
∞∑
`=0

(2`+ 1)λN` (K)

And from now on, from the explicit computation of the eigenvalues (which we are not going
to do) we can determine all the thermodynamics of the system.

5.6 The Ising model in higher dimensions

If we now try to study some more complex configurations of the Ising model, we immediately
encounter huge difficulties which make it impossible to exactly compute the partition func-
tion of the system. In particular, Onsager managed (with a huge effort) in 1944 to solve the
problem for a two-dimensional Ising model in absence of external fields, but in all other cases
(two-dimensional model with external field, or three-dimensional model) we still don’t know
an exact solution.
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However, even if we don’t know much in these cases there is still a lot to learn: in particular,
from Onsager’s solution33 we can see that already in two dimensions an Ising model can ex-
hibit phase transitions, showing a non null spontaneous magnetization for temperatures low
enough.

Let us therefore consider a two-dimensional Ising model, defined on a lattice made of N rows
and M columns. Applying periodic boundary conditions to the system in both directions (ge-
ometrically, this can be thought of as defining the model on a torus), and considering only
nearest neighbour interactions, the reduced Hamiltonian of the system will be:

−βH = K
∑
〈ij〉

SiSj + h
∑
i

Si

where we remember that K = βJ and h = βH . If we label each site of the lattice with the
couple (m,n) where m is the number of the column and n of the row to which the site belongs,
then we can rewrite34:

−βH = K
N∑
n=1

M∑
m=1

(Sm,nSm+1,n + Sm,nSm,n+1) + h
∑
m,n

Sm,n

If we now call µm the set of spins belonging to the m-th column:

µm = {Sm,1, . . . , Sm,n}

and define:

E(µm) = K
N∑
n=1

Sm,nSm,n+1 + h
N∑
n=1

Sm,n

E(µm, µm+1) = K

N∑
n=1

Sm,nSm+1,n

we can write:

−βH =

M∑
m=1

[E(µm, µm+1) + E(µm)]

Therefore, defining the transfer matrix T so that:

〈µm|T |µk〉 = eE(µm,µk)+E(µm)

the partition function will be:
ZN = TrTN

and the thermodynamics of the system can be derived from the eigenvalue of T with largest
magnitude. However, since T is a 2N × 2N matrix, this is a rather difficult problem (the matrix
becomes infinite in the thermodynamic limit!).
Onsager has shown that in the thermodynamic limit and for H = 0 the free energy of the
system is:

f = −kBT ln [2 cosh(2βJ)]− kBT

2π

∫ π

0
ln

[
1

2

(
1 +

√
1− g2 sin2 φ

)]
dφ

33We will not deduce it, and just limit ourselves to show it. However, in 5.7 we will use qualitative arguments to
show that indeed the dimension of an Ising model must be at least two if we want phase transitions to occur.

34Note, again, that the sum over nearest neighbours is done so that we don’t count twice the same terms.
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1 2

· · ·
i− 1 i i+ 1

· · ·
N

(a) one-dimensional Ising model at T = 0

1 2

· · ·
i− 1 i i+ 1

· · ·
N

(b) one-dimensional Ising model with a spin flipped

1 2

· · ·
i− 1 i i+ 1

· · ·
N

(c) one-dimensional Ising model with a domain flipped

Figure 5.2: Spin flipping for a one-dimensional Ising model

where:

g =
2

cosh(2βJ) coth(2βJ)

and also that the magnetization is:

m =

{[
1− sinh−4(2βJ)

]1/8
T < Tc

0 T > Tc

where Tc is the temperature given by the condition 2 tanh2(2βJ) = 1, which yields the numeric
result:

Tc ≈ 2.27
J

kB
(5.16)

This means that there is indeed a phase transition at T = Tc.
Onsager also showed that the critical exponents of this model are:

α = 0 β =
1

8
γ =

7

4

where α = 0 because the specific heat diverges logarithmically for T ∼ Tc.

5.7 Additional remarks on the Ising model

We now conclude the treatment of the Ising model with some additional remarks that allow us
to understand a little more about its properties.

5.7.1 The role of dimensionality

We have seen (although not really directly) that the dimensionality of the Ising model is crucial
for the existence of phase transitions; in particular we have seen that for d = 1 there are no
phase transitions, while for d > 1 they can occur. Sometimes the dimension of a model above
which phase transitions occur is called lower critical dimension, so in our case we can say that
the lower critical dimension of the Ising model is one.

We shall now use a heuristic argument in order to show that this is indeed the case for the Ising
model, and that for d = 1 there can be no long range order. This argument will also allow us to
estimate (even if a bit roughly) the critical temperature of the two-dimensional Ising model.
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One dimension

Let us consider a one-dimensional Ising model at T = 0; we know that in this case the system
is completely ordered, namely all the spins point in the same direction, say upwards. If we
now increase the temperature a little bit, then some spins will randomly flip due to thermal
fluctuations; what we want to see is if the ordered state of the system is stable under this
random spin flips35.
Therefore, let us consider a one-dimensional Ising model of N spins at T = 0 (with all spins
pointing upwards) with nearest neighbour interactions and without any external field, i.e. the
Hamiltonian of the system is:

H = −J
∑
〈ij〉

SiSj

and for the sake of convenience let us take periodic boundary conditions.
The entropy of such a state is null (the system has only one possible configuration) so its free
energy will be equal to its internal energy, and since there are N parallel bonds we will have:

F ord.
N = Uord.

N = −JN

Let us now flip a single spin (see figure 5.2); in this case, since two previously parallel bonds
become antiparallel, the internal energy of the system becomes:

U
flip
N = −J(N − 2) + 2J

and as of the entropy of the system:

S
flip
N = kB lnN

since the flipped spin can be in any of the N sites of the lattice (namely, the system can have
N different configurations). Therefore, from the thermodynamic definition of free energy (F =
U − TS):

F
flip
N = −J(N − 2) + 2J − kBT lnN

and the variation of free energy due to the spin flipping is:

∆FN = F
flip
N − F ord.

N = 4J − kBT lnN

We can therefore see that for fixed T > 0, ∆F → −∞ if N → ∞: in the thermodynamic limit
it is energetically convenient for the system to flip spins. We can therefore continue with the
operation of spin flipping until there are no other parallel spins left: the long range order of the
system is unstable under thermal fluctuations, and so as soon as T > 0 the one-dimensional
Ising model can’t exhibit a spontaneous magnetization (namely, there are no phase transitions).
We could have obtained the same result with a slightly different approach, namely considering
the system divided into two different magnetic domains, positively and negatively magne-
tized, respectively (see again figure 5.2). In this case the internal energy of the system is:

U
flip
N = −J(N − 2) + 2J = −JN + 4J

On the other hand the entropy of the system is again the same. Therefore, we should have
found ∆FN = F

flip
N − F ord

N = 4J − kBT lnN , deducing the same conclusions.
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Figure 5.3: two-dimensional Ising model with a domain flipped

Two dimensions

We now consider a two-dimensional Ising model, with the same properties as before, defined
on a lattice with coordination number z. Let us consider the system at T = 0 with all the spins
pointing upwards, and flip a domain of spins; the boundary of this domain will be a closed
path, and let us suppose that it is made of n bonds (see figure 5.3). The difference in internal
energy between the ordered state and one with a flipped domain is therefore36:

∆U = 2Jn

The entropy is much trickier to compute exactly, so we will only give an estimate. If we con-
sider the boundary of the domain as a random walk an upper limit to the number of possible
configurations of this boundary is zn; however, we are not taking into account the fact that the
domain wall cannot intersect itself (otherwise there would be more than one domain), namely
it must be a self-avoiding random walk. A first rough correction to this estimate could be sup-
posing that at each step the domain wall can only go in z − 1 directions since it must not
immediately go back on itself, so a slightly better upper limit to the number of possible config-
urations of the system is (z − 1)n. Thus we can estimate the difference in entropy between the
ordered and the domain-flipped state as:

∆S ≈ kBTn ln(z − 1)

However, our assumption still allows the domain boundary to intersect itself so we are surely
overestimating ∆S.

Therefore, the change in free energy due to the flipping of a domain of spins is:

∆F = [2J − kBT ln(z − 1)]n

We now see that the behaviour of ∆F is not well defined in the thermodynamic limit, namely
when n→∞. In particular we will have ∆F → −∞ only if:

T >
2J

kB ln(z − 1)
:= Tc

We therefore find something very interesting: in two dimensions the long range order of the
Ising model is unstable under thermal fluctuations only when T > Tc, while for T < Tc it
is stable, or in other words the system will always exhibit a spontaneous magnetization even
in the absence of any external fields. We thus have found that for d = 2 the Ising model

35Of course, in the thermodynamic limit the flipping of a finite number of spins will not be sufficient, in general,
in order to destroy the long range order; the only way to do so is flipping a non-zero fraction of spins.

36This can be understood thinking about the one-dimensional case. For d = 1 in fact we have ∆U = 4J when
we flip a single spin (and therefore there are two antiparallel bonds), so we can argue that if we flip N spins the
variation of internal energy is 2Jn (if not exactly, at least of the same order).
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undergoes a phase transition at T = Tc; let us note that this critical temperature depends on
the coordination number z, so it is a characteristic of the lattice considered and not a universal
property of the system37. If for example we consider a square lattice, z = 4 and we get Tc ≈
1.82 J

kB
, while as we have seen in 5.6 (equation (5.16)) the exact result gives Tc ≈ 2.27 J

kB
: this

discrepancy is due to the fact that we have overestimated the change in entropy of the system.

5.7.2 The role of symmetry

We can also see that the symmetry of the Hamiltonian of the system plays an important role
for the possibility of phase transitions, and also in determining the lower critical dimension of
the system.
In particular the fact that for the Ising model phase transitions can occur for d > 1 relies also
on the fact that the Hamiltonian of the system has a discrete symmetry, namely its symmetry
group is Z2. This means that the boundary of magnetic domains has finite “thickness” (one
lattice unit, since a boundary in this case simply separates two adjacent antiparallel spins).

However, if the degrees of freedom have a continuous symmetry things start getting different.
For example, the Hamiltonian of the Heisenberg model (see 5.5) is:

H = −J
∑
〈ij〉

~Si · ~Sj − ~H ·
∑
i

~Si

and in the case ~H = 0 the system has a rotational invariance. In fact, if R ∈ O(3) then we easily
see that:

H
(
{R~Si}, H = 0

)
= H

(
{~Si}, H = 0

)
(of course if ~H 6= 0 then the Hamiltonian will be invariant only under O(2) transformations).
In this case since the system has a wider symmetry its entropy will be much larger38, and so
we need more energy if we want long range order in the Heisenberg model at T > 0 (in other
words, the dimension of the domain wall will be comparable to the size of the system).

5.7.3 The role of interaction range

In order to see how the range of the interactions between the degrees of freedom of the sys-
tem affects its properties, let us consider a one-dimensional Ising model with infinite-ranged
interactions:

−H =
J0

2

∑
i,j

SiSj +H
∑
i

Si

(note that the sum in the interaction term is not restricted, and the 1/2 factor has been intro-
duced for later convenience). This model can be solved with the technique of Hubbard transfor-
mation, also called auxiliary field method.
First, we must note that J0 can’t be a constant independent of the dimension of the system
because the sum

∑
i,j SiSj contains a number of terms of the order of N2 and so in the ther-

modynamic limit it would diverge; we must therefore use the so called Kac prescription, setting
J0 = J/N so that the thermodynamic limit exists. Under these assumptions the partition func-
tion of the system is:

ZN =
∑

{Si=±1}

e
βJ
2N

∑
i,j SiSj+βH

∑
i Si

37But, as we have stressed many times, the behaviour of the thermodynamic properties of the system in the
neighbourhood of Tc is universal.

38Very intuitively, since there are “more directions” for the spins, there will be much more possible configurations
for the system.
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Since the double sum is not restricted, we have:

∑
i,j

SiSj =

(∑
i

Si

)2

If we now call x =
∑

i Si and a = βJ , we can use the Hubbard-Stratonovich identity39:

e
ax2

2N =

√
aN

2π

∫ +∞

−∞
e−

aN
2
y2+axydy (5.17)

where Re a > 0. The advantage of this approach is that the variable x, which contains all the
degrees of freedom of the system, is linear and not quadratic in the exponential; however we
have “paid” the price of having introduced another field, y (the auxiliary field from which this
method takes its name).
The partition function then becomes:

ZN =

√
βJN

2π

∫ +∞

−∞
e−

βJN
2
y2

∑
{Si=±1}

eβ(H+Jy)
∑
i Sidy

Physically this can be interpreted as the “mean value” of the partition functions of non inter-
acting Ising models subjected to an external field H − Jy whose component y is distributed
along a Gaussian.

We can therefore write:

ZN =

√
βJN

2π

∫ +∞

−∞
e−

βJN
2
y2
Qydy Qy =

∑
{Si=±1}

eβ(H+Jy)
∑
i Si

and Qy can be easily computed factorizing the sum, similarly to what we have done for the
Ising model in 5.4.1:

Qy =
∏
i

∑
S=±1

eβ(H+Jy)S = 2N coshN [β(H + Jy)]

Therefore:

ZN =

√
βJN

2π

∫ +∞

−∞
eNLdy L = ln (2 cosh [β(H + Jy)])− βJ

2
y2

Now, since the exponent in the integral that defines ZN is extensive (L doesn’t depend on N )
and N is large, we can compute it using the saddle point approximation (see appendix B). This
consists in approximating the integral with the largest value of the integrand, namely:

ZN ∼
√
βJN

2π
eNL(y0) ∼ eNL(y0)

where y0 is the maximum of L, thus given by the condition:

∂L
∂y |y0

= 0

39It can be easily verified completing the square in the exponential:

−aN
2
y2 + axy = −aN

2

(
y − x

2

)2

+
ax2

2N

and computing the Gaussian integral.
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which yields:
tanh(h+Ky0) = y0

Since it must be a maximum, we also must have:

∂2L
∂y2

|y0

< 0

Now, we can see that the physical meaning of y0 is the magnetization of the system in the
thermodynamic limit. In fact:

m = lim
N→∞

− 1

N

∂F

∂H
= lim

N→∞

1

N

∂ lnZ

∂h
= lim

N→∞

1

N

∂

∂h

[
N ln (2 cosh(h+Ky0))− K

2
y2

0

]
=

= lim
N→∞

1

N
N tanh(h+Ky0) = tanh(h+Ky0) = y0

Since we are interested in determining if the system can exhibit a spontaneous magnetization,
we consider the case h = 0; therefore we will have:

m = tanh(Km) (5.18)

which is a transcendent equation, so it can’t be solved analytically.
However, we can solve it graphically. From figure 5.4 we can see that there are three possible
cases (remembering that by definition K = βJ):

– for βJ > 1 there are three solutions, one for m = 0 and two at ±m

– for βJ = 1 these three solutions coincide

– for βJ < 1 there is only one solution: m = 0

This means that two possible non null solutions appear when:

T < Tc :=
J

kB

Let us see which of these solutions are acceptable, i.e. which of these solutions are maxima of
L. Still in the case h = 0, we have:

∂2L
∂y2

= K
[
K sech2(Ky)− 1

]
and so:

K ≤ 1: in this case y0 = 0, so:
∂2L
∂y2

|y0=0

= K(K − 1) < 0

so y0 is indeed a maximum for L

K > 1: if y0 = 0 then:
∂2L
∂y2

|y0=0

= K(K − 1) > 0

so this is not a maximum for L, and thus is not an acceptable solution of (5.18). On the
other hand, if y0 = ±m then (also using the evenness of sech):

∂2L
∂y2

|y0=±m
= K

[
K sech2(Km)− 1

]
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m

tanh(km)

k < 1

m

tanh(km)

k = 1

m

tanh(km)
k > 1

Figure 5.4: Graphical solution of equation (5.18)

and this time this derivative is negative, because:

K sech2(Km)−1 < 0 ⇐⇒ sech(Km) <
1√
K

⇐⇒ cosh(Km) >
√
K > 1

which is always true.

Therefore, if T > Tc = J/kB the only acceptable value for the magnetization of the system is
m = m = 0, while if T < Tc then m = ±m 6= 0: a phase transition has occurred, since now the
system can exhibit a net spontaneous magnetization.
We thus see explicitly that if we let the interactions to be long-ranged the Ising model can
undergo phase transitions already in the one-dimensional case.



Chapter 6

Mean field theories

It is a very rare fact that a model of interacting degrees of freedom can be solved exactly1, and
generally a model is not solvable in any dimension (e.g. the Ising model) so we must find other
ways to study such systems in order to understand the possible occurrence of phase transitions
and their behaviour near possible critical points. The most simple method, and the first to
which one usually resorts to, is the so called mean field approximation.
One common feature of mean field theories is the identification of an appropriate order param-
eter; then, in very general and abstract words, there are two different approaches that can be
taken (we shall see both):

– approximating an interacting system by a non-interacting one in a self-consistent external
field expressed in terms of the order parameter

– expressing an approximate free energy in terms of this parameter and minimize the free
energy with respect to the order parameter

In other (and maybe clearer) words, the first approach consists in substituting a system of inter-
acting degrees of freedom with another system where these degrees of freedom do not interact
but are subject to the action of an external mean field, which approximates the action of all the
degrees of freedom on a single one; the second approach on the other hand is an “extension”
in statistical mechanics of variational principles.

In order to be a little bit more explicit, let us see how the first approach applies to the Ising
model2. In the case of nearest-neighbour interactions, the reduced Hamiltonian of the system
is:

−βH = K
∑
〈ij〉

SiSj + h
∑
i

Si

Consider now the single spin Si; we can note that the first term of the reduced Hamiltonian can
be written as:

K
∑
〈ij〉

SiSj = K
∑
i

Siĥi({S}) (6.1)

where:
ĥi({S}) =

∑
j∈n.n.(i)

Sj

where with the notation j ∈ n.n.(i) we mean that j is a nearest neighbour of i. We thus see that
every spin Si is subjected to an internal field ĥi due to the presence of the nearest neighbouring

1An exhaustive review of exactly solvable models is given in [1].
2We now just make some qualitative observations; the mean field theory for the Ising model will be treated in

detail shortly.
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spins.
Now, if the number z of nearest neighbours is large (which happens in high dimensions, or
equivalently we could assume interactions with a larger number of spins, for example includ-
ing also the so called next nearest neighbours) this internal field can be approximated with the
mean field generated by all the other spins in the lattice:

1

z

∑
j∈n.n.(i)

Sj ≈
1

N

∑
j

Sj (6.2)

This suggests that (6.1) can be rewritten as:

K
∑
i

Si
∑
j

Sj
z

N

If we consider an Ising model with an hypercubic lattice and simple nearest-neighbour inter-
actions, we know that z = 2d so the mean field term can be written as:

ĥm.f. = 2
dK

N

(∑
i

Si

)2

since the two sums are independent.
We therefore have that the approximation (6.2) (with z = 2d) is better the larger the dimen-
sionality d of the system. From this very simple observation we can argue something that will
become explicit and clear only later on (see 6.6.1): mean field theories are good approximations
only if the dimensionality of the system is large enough.

Let us now come back to the general properties of mean field theories.
One of the main features of mean field theories is that they neglect the effects of fluctuations
in the order parameter (in other words, within mean field theories the order parameter is sup-
posed to be constant over all the system): on one hand we will see that this will make it possible
to study a lot of systems, and to obtain loads of interesting and useful information about them,
but on the other one we will see that this will be fatal for the reliability of mean field theories in
the proximity of critical points, since they are characterised by the divergence of long-ranged
fluctuations (see 5.1.2). This also means that mean field theories are in any case rather efficient
far from critical points.

There are many possible mean field theories, and we are mainly going to study them applied
to the Ising model (since it’s the one we know better until now) or similar ones.

6.1 Weiss mean field theory for the Ising model

Let us now study the mean field theory of an Ising model, called Weiss mean field theory.
As usual, we start from the Hamiltonian of a nearest-neighbour interaction Ising model, so that
the partition function of the system is3:

ZN = Tr e−βH =
∑
S1=±1

· · ·
∑

SN=±1

eβ(
1
2

∑
〈ij〉 JijSiSj+H

∑
i Si)

We define our order parameter as the single-spin magnetization:

m = 〈Si〉 = 〈S〉
3The 1/2 factor has been introduced for later convenience (it can be reabsorbed in the definition of Jij).
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and we introduce it in the partition function through the identity:

SiSj = (Si −m+m)(Sj −m+m) = −m2 +m(Si + Sj) + (Si −m)(Sj −m)

Note that the last term is (Si − m)(Sj − m) = (Si − 〈S〉)(Sj − 〈S〉), which exactly measures
the fluctuations of the spin variables from their mean value. We now neglect it, so that in the
partition function we can approximate:

1

2

∑
〈ij〉

JijSiSj ≈
1

2

∑
〈ij〉

Jij
[
−m2 +m(Si + Sj)

]
If our system is isotropic then Jij = J , so that we can write

∑
〈ij〉 Jij = Jz

∑
i where z is the

coordination number of the lattice. This means that:

1

2

∑
〈ij〉

Jijm(Si + Sj) = Jzm
∑
i

Si

and the partition function reduces to:

ZN =
∑
S1=±1

· · ·
∑

SN=±1

eβ(−Jzm
2 1

2

∑
i 1+Jzm

∑
i Si+H

∑
i Si) =

= e−β
Jzm2

2
N
∑
S1=±1

· · ·
∑

SN=±1

eβ(Jzm+H)
∑
i Si = e−β

Jzm2

2
N
∑
S1=±1

· · ·
∑

SN=±1

N∏
i=1

eβ(Jzm+H)Si =

= e−β
Jzm2

2
N

(∑
S=±1

eβ(Jzm+H)S

)N
= e−β

Jzm2

2
N [2 cosh (β(Jzm+H))]N

Therefore the free energy of the system in the thermodynamic limit is:

f = − lim
N→∞

kBT

N
lnZN =

1

2
Jzm2 − kBT ln [cosh (β(Jzm+H))]− kBT ln 2 (6.3)

and the magnetization is:

m = − ∂f
∂H |T

= tanh [β(Jzm+H)]

We have thus found the so called self-consistency equation for the magnetization:

m = tanh [β(Jzm+H)] (6.4)

which is almost the same as the one we have encountered in 5.7.3, i.e. equation (5.18).
We now proceed exactly as before. Since we are interested in studying the possible occurrence
of phase transitions and in particular the existence of spontaneous magnetization we focus on
the case H = 0:

m = tanh(βJzm) (6.5)

which is just like equation (5.18), but taking into account also the coordination number of the
lattice.
In this case we will have that the phase transition occurs when βJz = 1, i.e. at the temperature:

βcJz = 1 ⇒ Tc =
z

kB
J
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m

f(m)

T > Tc

T < Tc

Figure 6.1: Trend of f for m ≈ 0 in the two cases considered

Now, in order to better understand the physical properties of our system at different tempera-
tures let us expand the free energy (6.3) around m = 0, still in the case H = 0. Using the Taylor
series for cosh and ln we have ln(coshx) ∼ x2/2− x4/12 + · · · , so:

f(m,H = 0)
m≈0∼ −kBT ln 2 +

Jz

2
(1− βJz)m2 +

β3

12
J4z4m4 (6.6)

Therefore, the behaviour of f near m = 0 depends strongly on the sign of the coefficient of m2;
in particular:

– for βJz < 1, namely for T > Tc the free energy f has only one minimum for m = 0: this
is the paramagnetic (disordered) phase

– for βJz > 1, namely T < Tc the free energy h has two stable minima at:

m = ±m := ±

√
3(βJz − 1)

(βJz)3

This is the magnetized (ordered) phase

Note that in the computations we have just made we have never imposed a particular value
for the dimensionality of the system. This means that the results of this approximation should
be valid also for d = 1, but we know that in one dimension the Ising model does not exhibit a
phase transition.
This is an expression of the fact that in the one-dimensional case mean field theory is not a good ap-
proximation (again, the dimensionality of the system is still too low).

Let us finally note a fact. As we have previously stated mean field theories are characterized by
the fact that the fluctuations of the order parameter are neglected, and we can see that the self-
consistency equation (6.5) can be indeed obtained by neglecting the fluctuations of the single
spins. In other words we can find it if we consider all the spins “freezed” to the value m; in fact
if we consider a single spin S we will have:

〈S0〉 = m =

∑
S=±1 e

βJzmSS∑
S=±1 e

βJzmS
=
eβJzm − e−βJzm

eβJzm + e−βJzm
= tanh(βJzm)

(where 〈S〉 = m because we are requiring that the mean values of all the spins are equal).
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6.1.1 Critical exponents of Weiss mean field theory for the Ising model

We can also try to understand something more about our system, for example computing its
critical exponents4.

Exponent β Let us begin with the exponent β, which (see 1.5 and table 1.2) is the one relative
to the order parameter, namely the magnetization m. In order to find it we must see how
the magnetization varies as a function of Tc − T ; from the expansion of f we have just seen,
imposing the extremal condition we get:

0 =
∂f

∂m |m
∼ Jz(1− βJz)m+

β3

3
J4z4m3 = m

[
Jz

T
(T − Tc) +

β3

3
J4z4m2

]
where we have used the definition of critical temperature Tc = Jz/kB . Therefore (excluding of
course the case m = 0):

m2 ∼ const. · (Tc − T ) ⇒ m ∼ (Tc − T )1/2

We therefore have:

β =
1

2

Exponent δ The exponent δ is the one that describes the behaviour of H as a function of m
when T = Tc. To compute that let us begin from the self-consistency equation for m in the case
H 6= 0, and invert it:

m = tanh(β(Jzm+H)) ⇒ β(Jzm+H) = tanh−1m

Now expanding for small m, since tanh−1 x ∼ x+ x3/3 + x5/5 we have:

Jzm+H ∼ kBTm+
kBT

3
m3 ⇒ H ∼ kBm(T − Tc) +

kBT

3
m3

and if we set T = Tc:

H ∼ m3

Therefore:

δ = 3

Exponent α This exponent is the one that describes the behaviour of the specific heat CH =
−T∂2f/∂T 2

|H when H = 0. If T > Tc then m = 0, and since f ∼ −kBT ln 2 we have CH = 0.
Therefore:

α = 0

For T < Tc the specific heat has a different dependence on the temperature, but in the end it
turns out that CH has a jump discontinuity at T = Tc, so from the definition of critical exponent
(see 1.5) we indeed have α = 0 (see 6.5.3 for a slightly more detailed computation).

4In fact, we have introduced mean field theories in order to be able to do something more than just see if phase
transitions are possible. In particular, we would like to study the behaviour of a system near a critical point.
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Exponent γ This is the exponent that regulates the isothermal susceptibility:

χT =
∂m

∂H
=

1

∂H/∂m

From the computation of the exponent δ we have seen that:

H ∼ kBm(T − Tc) +
kBT

3
m3

so:
∂H

∂m
∼ kB(T − Tc) + kBTm

2

Therefore for small m, neglecting the quadratic term:

χT ∼
1

kB
(T − Tc)−1

and thus:
γ = 1

To recap, the Weiss mean field theory for magnetic systems predicts the following values for
the critical exponents:

α = 0 β =
1

2
γ = 1 δ = 3 (6.7)

We can immediately note that these exponents are different from those found by Onsager for
the Ising model in two dimensions, so the mean field theory is giving us wrong predictions.
As we have already stated (but this will be treated in much more detail later on) this is because
mean field theories are good approximations only if the system has a high enough dimension-
ality (and d = 2 is still too low for the Ising model, see 6.6.3).

6.2 Hubbard-Stratonovich mean field theory for the Ising model

We have already encountered (see 5.7.3) the Hubbard-Stratonovich identity (5.17) with the sad-
dle point approximation to compute the partition function of a one-dimensional Ising model
with long-range interactions. The same technique can also be used to formulate mean field
theories for systems with short-ranged interactions, and it is one of the most useful ones.

We therefore start from the most general Hamiltonian of a two-dimensional Ising model with
nearest-neighbour interactions:

H = −1

2

∑
〈ij〉

JijSiSj −
∑
i

HiSi

whose partition function is:

ZN = Tr eβ(
1
2

∑
〈ij〉 JijSiSj+

∑
iHiSi)

The idea of Hubbard-Stratonovich mean field theory is the same as in 5.7.3, namely substituting
the quadratic term SiSj in the Hamiltonian with a linear one, introducing some auxiliary field
over which we integrate.
In order to do so we must generalize the Hubbard-Stratonovich identity (5.17).
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Theorem. LetA be a real symmetric matrix and~b an arbitrary vector. Then:

1√
detA

e
1
2
bi(A

−1)ijbj =

∫ +∞

−∞

N∏
i=1

e−
1
2
xiAijxj+xibi

√
2π

dxi

where for the sake of simplicity we have used Einstein’s notation on repeated indices.

We omit the proof of this result.

Therefore, defining:

bi := Si (A−1)ij := Jij xi := ϕi

we get:

e
1
2
JijSiSj =

1√
det J

∫ +∞

−∞

N∏
i=1

e−
1
2
ϕi(J

−1)ijϕj+ϕiSi

√
2π

dϕi

and the partition function becomes:

ZN =
1√

(2π)N det J

∫ +∞

−∞

N∏
i=1

e−
β
2
ϕi(J

−1)ijϕj Tr{Si} e
β(ϕi+Hi)Sidϕi

where we have explicitly written that the trace is performed over the spin variables Si.
Now that the terms in the exponential are linear in Si the partition function is easier to compute;
let us change variable defining:

ψi = ϕi +Hi

so that:

ZN =
1√

(2π)N det J

∫ +∞

−∞

N∏
i=1

e−
β
2

(ψi−Hi)(J−1)ij(ψj−Hj) Tr{Si} e
βψiSidψi

However:
Tr{Si} e

βψiSi =
∑

{Si=±1}

eβψiSi =
∏
i

∑
S=±1

eβψiS =
∏
i

2 cosh(βψi)

and since x = elnx we have:

Tr{Si} e
βψiSi = e

∑
i ln[2 cosh(βψi)]

Therefore:

ZN =
1√

(2π)N det J−1

∫ +∞

−∞

N∏
i=1

e−βL(ψi,Hi,Jij)dψi

where:
L(ψi, Hi, Jij) =

1

2

∑
i,j

(ψi −Hi)(J
−1)ij(ψj −Hj)−

1

β

∑
i

ln [2 cosh(βψi)]

Let us note that there is no trace left of the original degrees of freedom Si in the partition
function, and that it has the form of a functional integral, since in the continuum limit (N → ∞
and the distance between lattice sites tending to zero) the auxiliary fields become functions of
the position, ψ(~r).
Let us also note that until now we still have not done any approximation (we have just rewritten
the partition function); this comes into play right now: since the partition function has the form
of a functional integral we must find some approximate ways to compute it. The simplest of
all possible approximations is the saddle point approximation (see appendix B), which essentially
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consists in approximating the integral with the maximum value of the integrand. In other
words we approximate:∫ +∞

−∞

N∏
i=1

e−βL(ψi,Hi,Jij)dψi ≈ e−βL(ψi,Hi,Jij) ⇒ ZN ≈
1√

(2π)N det J
e−βL(ψi,Hi,Jij)

where the stationary solutions are those which satisfy:

δL
δψk |ψk

= 0 ∀k

In this case we will have:∑
j

(J−1)kj(ψj −Hj)− tanh(βψk) = 0 ∀k (6.8)

multiplying both sides by Jik and summing over k, taking advantage of the fact that Jij = Jji
and in the end renaming k with j we get:

ψi = Hi +
∑
j

Jij tanh(βψj) ∀i (6.9)

Let us see the relation between the auxiliary fields ψi and the order parameter of the system
mi. We know that:

mk = − ∂F

∂Hk

and from the saddle point approximation we have:

e−βF = Z ≈ e−βL(ψi,Hi,Jij) ⇒ F = L(ψi, Hi, Jij)

Therefore:

mk = − ∂F

∂Hk
= − ∂

∂Hk
L(ψi, Hi, Jij) =

= − ∂

∂Hk

1

2

∑
i,j

(ψi −Hi)(J
−1)ij(ψj −Hj)−

1

β

∑
i

ln
(
2 cosh(βψi)

) =

=
∑
j

(J−1)kj(ψj −Hj) = tanh(βψk)

where we have used (6.8). Thus:

ψi = kBT tanh−1mi ∀i (6.10)

and plugging this into (6.9):

kBT tanh−1mi = Hi +
∑
i,j

Jijmj ⇒ mi = tanh

β
Hi +

∑
i,j

Jijmj


We can note that this is a more general form of the self-consistency equation (6.4) for the mag-
netization that we have found in Weiss mean field theory. In fact, if we set Hi = H = const.
(so that also mi = m = const.) and choose a nearest-neighbour interaction (i.e. Jij is equal to
a constant J if the i-th and j-th sites are nearest neighbours, otherwise is null), calling z the
coordination number of the lattice we get exactly (6.4).
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This means that in this approximation we deduce the same conclusions we have seen in 6.1
that come from this self-consistency equation; in particular we will have that the temperature
of the phase transition when H = 0 is again Tc = zJ/kB and that the critical exponents δ and γ
are, respectively, 3 and 1.
We can thus already see that all the mean field theories are equivalent when applied to the
same system (which is something reasonable since the approximation we make is always the
same). In the following sections we will see many other mean field theories, applied also to flu-
ids (see 6.4), and we will always find the same values for the critical exponents. This is another
expression of the fact that different systems, like an Ising model or a classical fluid, belong to
the same universality class (even more, as we have shown in 5.3.4 they are actually equivalent)
and thus behave similarly near a critical point.

6.3 Variational methods

Variational methods in statistical mechanics are very important since they provide a tool to
formulate mean field theories which are valid for any temperature range and with order pa-
rameters of essentially arbitrary complexity.
Their central idea is what one would expect: if H is the Hamiltonian of a physical system and
ψα is a set of arbitrary trial states, then we can obtain the energy of the ground state of the
system by minimizing 〈H〉ψα with respect to ψα; since every ψα will be in general a function
or an even more complex object, 〈H〉ψα in general is a functional so its minimization must be
intended in the sense of functional analysis.
We will see that however the only mean value of the Hamiltonian won’t be sufficient since we
know that the equilibrium configurations of the system are given by the minima of the free
energy. In other words, we will compute the free energy using some trial states ψα and then
minimize it in the ways we will explain.

Such variational methods are also used in quantum mechanics when a system is too complex
and its Schrödinger equation can’t be solved exactly: in this case one introduces a set |ψα〉 of
trial wave functions and minimizes the functional Eα = 〈ψα|H|ψα〉with respect to |ψα〉, so that
both the wave functions and the energy of the ground state of the system can be found.
In statistical mechanics variational methods are performed using the phase space equilibrium
probability density of the system.
In particular, the approach of variational methods in statistical mechanics is based upon two
inequalities which we now show.

Theorem. Let ϕ be a random variable (it can be either discrete or continuous), and call its probability
density ρ; clearly, for any function f of ϕ the mean value of f is defined as:

〈f(ϕ)〉ρ := Tr(ρ(ϕ)f(ϕ))

1. If f is the exponential function then the following inequality holds:〈
e−λϕ

〉
ρ
≥ e−λ〈ϕ〉ρ ∀ρ, ∀λ ∈ R

2. IfH(ϕ) is the Hamiltonian of a system and F its free energy, then:

F ≤ Tr(ρH) + kBT Tr(ρ ln ρ) ∀ρ
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Proof.

1. Supposing ϕ a real number, from the Taylor expansion of the exponential we have e−ϕ ≥
1− ϕ and so (we omit the subscript ρ on mean values for simplicity):

e−λϕ = e−λ(ϕ+〈ϕ〉−〈ϕ〉) = e−λ〈ϕ〉e−λ(ϕ−〈ϕ〉) ≥ e−λ〈ϕ〉 [1− λ(ϕ− 〈ϕ〉)]

and therefore taking the mean value of both sides:〈
e−λϕ

〉
≥
〈
e−λ〈ϕ〉

〉
− λe−λ〈ϕ〉 〈(ϕ− 〈ϕ〉)〉 = e−λ〈ϕ〉

2. The canonical partition function of the system can be written as:

Z = Tr e−βH = Tr
(
ρe−βH−ln ρ

)
=
〈
e−βH−ln ρ

〉
≥ e−β〈H〉−〈ln ρ〉

where the last step comes from the first inequality. Since Z = e−βF with F the free energy
of the system, we have:

e−βF ≥ e−β〈H〉−〈ln ρ〉

and taking the logarithm:

F ≤ 〈H〉+ kBT 〈ln ρ〉 = Tr(ρH) + kBT Tr(ρ ln ρ)

Remember also that since ρ is a probability distribution it must satisfy:

ρ(ϕ) ≥ 0 Tr ρ = 1

Now, the free energy F of the system is a functional of the probability density ρ and from what
we have just seen we can set an upper bound to F :

F ≤ 〈H〉+ kBT 〈ln ρ〉 = Tr(ρH) + kBT Tr(ρ ln ρ) := Fm.f.

where “m.f.” stands for “mean field”. In other words we can estimate the free energy of the
system in mean field theories as 〈H〉 + kBT 〈ln ρ〉, and the best approximation of the real free
energy will be given by the minimization of Fm.f.. In particular, the ground state configuration
of the system will be given by the form of ρ that minimizes F , which can be easily determined
in general:

δF

δρ |ρeq

= 0 ⇒ ρeq =
A

e
e−βH

with A a generic constant, and since ρeq must be subjected to the constraint Tr ρeq = 1 we find
A = e/Z, so that:

ρeq =
1

Z
e−βH

This is extremely reasonable: since we have only required the minimization of the free energy,
the probability density we obtain is the one we would expect from ensemble theory.
However, until now the computation is still exact: if we want to determine ρeq we must com-
pute Z, which in general is not feasible.
Within this variational approach the mean field approximation comes into play by choosing
the following form of the trial probability density:

ρm.f. =
∏
α

ρα
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where again “m.f.” stands for “mean field”, α labels the degrees of freedom of the system
and ρα is the probability distribution of the sole α-th degree of freedom. In other words we
are approximating the probability distribution so that the degrees of freedom are statistically
independent5, namely:

〈f1(ϕ1)f2(ϕ2)〉ρm.f.
= 〈f1(ϕ1)〉ρm.f.

〈f2(ϕ2)〉ρm.f.
∀f1, f2

This way the free energy of the system has the form:

Fρm.f. = 〈H〉ρm.f.
+ kBT

∑
α

〈ln ρα〉ρm.f.
= 〈H〉ρm.f.

+ kBT
∑
α

Tr(ρα ln ρα)

and must be minimized with respect to ρα.
This can be done with two different approaches:

1. The most used one consists in parametrizing ρα with an appropriately defined order pa-
rameter 〈ϕα〉 that can describe an eventual phase transition; in this way F becomes a
(real) function of 〈ϕα〉, and the minimization becomes simpler since it reduces to mini-
mizing a simple function.
The parametrization must of course satisfy the constraints:

Tr ρα = 1 Tr(ραϕα) = 〈ϕα〉

The advantage of such an approach is that the variational parameter ϕα coincides with
the order parameter.

2. Another possible approach consists in considering ρα itself as a variational parameter,
and minimizing F with respect to it. This is a more general approach, but this time it’s
harder to establish a connection between F as a functional of ρ and F as a function of the
order parameter that describes a phase transition.

We will analyse these two different approaches applying them to two different models.

6.3.1 Bragg-Williams approximation for the Ising model

Again, we consider a system with the following Hamiltonian:

H = −J
∑
〈ij〉

SiSj −
∑
i

HiSi

In this case our random variables ϕ are the spins: ϕα = Si, and our order parameter is
〈ϕα〉 = mi (we will later see that this is exactly the local magnetization also in the mean field
approximation). For what we have previously stated we must build a single-particle probabil-
ity density ρi = f(mi) in terms of this order parameter, such that Tr ρi = 1 and Tr(ρiSi) = mi.
For example, since we have two constraints on ρi we could use a linear expression for the
probability density involving two parameters6:

ρi = aδSi,1 + b(1− δSi,1)

5This is physically equivalent to what we have done in the Weiss mean field theory for the Ising model (see 6.1),
where we neglected the correlations between spins.

6This form of ρi is very general, and does not depend on the fact that the degrees of freedom of the system can
only assume two values: if there is a different number of possible states, say n, then ρi can be written in the same
form, but a will be the probability of one state while b the probability of the remaining n − 1 ones. We will shortly
see this when we will apply the Bragg-Williams approximation to the Potts model.



140 CHAPTER 6. MEAN FIELD THEORIES

where a and b are, respectively, the probability that Si = +1 and Si = −1. Inserting this
expression of ρi in the two constraints we get:

Tr ρi = a+ b = 1 Tr(ρiSi) = 〈Si〉ρi = a− b = mi

and therefore:
a =

1 +mi

2
b =

1−mi

2
Thus:

ρi =
1 +mi

2
δSi,1 +

1−mi

2
(1− δSi,1)

We are now able to compute the two terms that contribute to the free energy Fρm.f. = 〈H〉ρm.f.
+

kBT
∑

α 〈ln ρα〉ρm.f.
of the system.

First of all:
〈H〉ρm.f.

= −J
∑
〈ij〉

〈SiSj〉ρm.f.
−
∑
i

Hi 〈Si〉ρm.f.

However, since ρm.f. =
∏
i ρi (namely the degrees of freedom are independent, as we have

already seen), then 〈SiSj〉ρm.f.
= 〈Si〉ρi 〈Sj〉ρj . Furthermore, if g(Si) is a generic function of Si

then:

〈g(Si)〉ρm.f.
= Tr(g(Si)ρi) =

∑
Si=±1

g(Si)ρi =

=
∑
Si=±1

g(Si)

(
1 +mi

2
δSi,1 +

1−mi

2
(1− δSi,1)

)
=

1 +mi

2
g(1) +

1−mi

2
g(−1)

and so if g(Si) = Si we have 〈Si〉ρm.f.
= mi: our order parameter is (as we expected) the local

magnetization of the system.
Therefore:

〈H〉ρm.f.
= −J

∑
〈ij〉

mimj −
∑
i

Himi

Then, for the other term of F we have:∑
i

〈ln ρi〉ρm.f.
=
∑
i

Tr(ρi ln ρi) =
∑
i

(
1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

)

The total energy of the system will be:

Fρm.f. = 〈H〉ρm.f.
+ kBT

∑
i

〈ln ρi〉ρm.f.
=

= −J
∑
〈ij〉

mimj −
∑
i

Himi + kBT
∑
i

(
1 +mi

2
ln

1 +mi

2
+

1−mi

2
ln

1−mi

2

)
(6.11)

We now have to minimize Fρm.f. with respect to mi:

0 =
∂Fρm.f.

∂mi
= −2J

∑
j∈n.n.(i)

mj −Hi + kBT

(
1

2
ln

1 +mi

2
+

1

2
− 1

2
ln

1−mi

2
− 1

2

)
=

= −2J
∑

j∈n.n.(i)

mj −Hi +
kBT

2
ln

1 +mi

1−mi
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where j ∈ n.n.(i) means that the j-th site is a nearest neighbour of the i-th one.
Now, recalling that:

tanh−1 x =
1

2
ln

1 + x

1− x
|x| < 1

(and surely |mi| < 1) we can write:

kBT tanh−1mi = 2J
∑

j∈n.n.(i)

mj +Hi

and inverting the hyperbolic tangent:

mi = tanh

β
2J

∑
j∈n.n.(i)

mj +Hi


We have again found the self-consistency equation (6.4) for the magnetization that we have
already encountered in the Weiss mean field approximation! This is again a confirmation that
all mean field theories are equivalent.

We can thus see that in the Bragg-Williams approximation also the β and α exponents are the
same of the Weiss mean field theory; in fact, we have seen in 6.1.1 that they come from the
expansion of the free energy density for small values of the magnetization when H = 0. If we
now set H = 0 into (6.11), so that mi = m ∀i, we get:

Fρm.f.

N
= −Jzm2 + kBT

(
1 +m

2
ln

1 +m

2
+

1−m
2

ln
1−m

2

)
If we now expand the logarithm for small m, we get:

f(m) = lim
N→∞

Fρm.f.

N
= −Jzm2 + kBT

(
− ln 2 +

m2

2
+
m4

12
+ · · ·

)
∼

∼ −kBT ln 2 +

(
kBT

2
− Jz

)
m2 +

kBT

2
m4

Therefore we see that the behaviour of f near m = 0 is the same of equation (6.6), and so both
the exponents β and α turn out to be equal to what we have determined7 in 6.1.1.

We can also say something8 in the case H 6= 0. Supposing that our system is uniform, i.e.
mi = m ∀i, we can rewrite (6.11) as:

f̃ :=
Fρm.f.

N
= −Hm+ f0

where:

f0 = −Jzm2 + kBT

(
1 +m

2
ln

1 +m

2
+

1−m
2

ln
1−m

2

)
and since we are looking for the absolute minimum of f̃ :

0 =
∂f̃

∂m
= −H − f ′0 = −H − 2Jzm+

kBT

2
ln

1 +m

1−m
7Note that also the temperature of the transition is still the same, considering also the 1/2 factor we have already

mentioned.
8These considerations apply in general also in the other mean field theories considered, but we show them now.
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m

f ′0(m)

h

(a) T > Tc

m

f ′0(m)

h

m1 m2 m3

(b) T < Tc

Figure 6.2: Solutions of (6.12)

which gives the self-consistency equation we already know:

h = −2βJzm+ tanh−1m (6.12)

As we can see from the plots in figure 6.2 the number of the possible solutions depends on the
temperature of the system. In particular if 2βJz < 1 (i.e. T > Tc), expanding the right hand side
of (6.12) we get a positive linear term (2βJzm > 0), so that the behaviour of−βJzm+tanh−1m
is as shown in figure 6.2a, and (6.12) has only one solution.
On the other hand if T < Tc then the linear term changes sign and −βJzm+ tanh−1m behaves
as in figure 6.2b: in this case if |h| is small enough there are three possible solutions, which we
have called m1, m2 and m3. These are all extrema of f̃ , but how can we understand which is a
minimum or a maximum? And above all, which of them is the global minimum?
If we suppose h > 0 to be large there will be only one solution, m3, and as h decreases also m1

and m2 will appear; we can therefore argue that for the continuity of f̃ the solution m3 is still a
minimum also when m1 and m2 are present. Similarly, if we take h < 0 we can conclude that
also m1 is a minimum; therefore m2 will necessarily be a maximum.
Now, in order to see which between m1 and m3 is the global minimum of f̃ let us take h > 0 as
in figure 6.2b and compute:

f̃(m3)− f̃(m1) =

∫ m3

m1

f̃ ′(m)dm =

∫ m3

m1

(f ′0 − h)dm

From figure 6.2b we see that this is equal to the area enclosed by the the straight line h = const.
and the graph of f ′0, which is clearly negative if h > 0. Therefore f̃(m3) < f̃(m1) and so we
conclude that m3 is always the global minimum of f̃ .
Similarly, when h < 0 the global minimum of f̃ is m1.

This means that as soon as h changes sign the global minimum of f̃ changes abruptly from m3

to m1. We are thus obtaining the phenomenology that is indeed observed for a magnet when
we change the external field H . In other words the sets of points (h(m),m) are exactly the
graphs represented in figure 1.3b, i.e. the graphs of the magnetization seen as a function of the
external field.

6.3.2 Bragg-Williams approximation for the Potts model

We now apply the same approximation that we have just seen to a slightly more complex
situation: the Potts model.
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This is defined exactly as the Ising model, but with an essential difference: the degrees of
freedom of the system, which we now call σi, instead of just two values can assume q integer
values: σi ∈ {1, . . . , q}.
We can therefore write the Hamiltonian of such a system as:

H = −J
∑
〈ij〉

δσi,σj −H
∑
i

δσi,1

(where we have supposed that the external magnetic field tends to favour the situation where
the degrees of freedom assume the value 1; of course we could have done otherwise).
As can be expected the Potts model with q = 2 is equivalent to an Ising model, as can be seen
from the following equivalence:

δσ,σ′ =
1

2
(1 + σσ′)

where σ and σ′ are the degrees of freedom of the Ising model (σ, σ′ = ±1).
However, a Potts model with q = 3 is not equivalent to an Ising model where Si = −1, 0,+1,
as one could have expected. In fact it is not possible in this case to write a δ of the three-state
variable σ with “simple” terms involving σ-s (namely, only quadratic terms); in particular it
turns out that:

δσ,σ′ = 1 +
1

2
σσ′ +

3

2
σ2σ′

2 − (σ2 + σ′
2
)

We therefore want to apply the Bragg-Williams approximation to a q-state Potts model.
First of all, we call x = 〈δσ,1〉 our order parameter, and write the probability distribution of a
single degree of freedom as9:

ρσ = aδσ,1 + b(1− δσ,1)

Therefore, from:

Tr ρσ = a+ (q − 1)b = 1 Tr(ρσδσ,1) =

q∑
σ=1

[
δσ,1 · aδσ,1 + δσ,1 · b(1− δσ,1)

]
= x

we get:

a = x b =
1− x
q − 1

From now on one can proceed like we have previously seen.

6.3.3 Mean field theory for the Blume-Emery-Griffiths model

The Blume-Emery-Griffiths model (often shortened in “BEG” model) is a lattice gas model used
to describe the properties of the superfluid transition of 4He, which when it is cooled under ap-
proximately Tc = 2.7 K undergoes a continuous phase transition10 from fluid to superfluid;
superfluids exhibit several interesting properties, like having zero viscosity. The BEG model
is used to describe what happens when we add some 3He to the system; it does not consider
quantum effects, but only the “messing up” due to the 3He impurities.
Experimentally when 3He is added to 4He the temperature of the fluid-superfluid transition
decreases. For small concentration of 3He the mixture remains homogeneous, and the only
effect is the change of Tc; however, when the concentration x of 3He reaches the critical value
x ≈ 0.67, 3He and 4He separate into two phases (just like oil separates from water) and the λ

9As we have stated in the footnote on page 139, we write ρ in general as the sum of the probability that the
degree of freedom assume a particular value and of that of all the remaining values; in this case we have chosen
σ = 1 as this particular value, but of course we could have done otherwise.

10This is generally called λ transition, because the plot of the specific heat as a function of the temperature has a
shape that resembles a λ.
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transition becomes first-order (namely, discontinuous). The transition point (xt, Tt) where the
system shifts from a continuous λ transition to a discontinuous one is that where the phase
separation starts and is called tricritical point.
The BEG model was introduced to describe such a situation.

As we have anticipated, it is a lattice gas model and so it is based on an Ising-like Hamiltonian
(see 5.3.4). On the sites of this lattice we define a variable Si which can assume the values −1, 0
and +1: we decide that when an 4He atom is present in a lattice site then Si = ±1, while when
Si = 0 it means that the site is occupied by an 3He atom. We then define our order parameter
to be m = 〈Si〉; in the Ising model

〈
S2
i

〉
can only be equal to 1, while in this case it can be

either 0 or 1: we can thus interpret
〈
S2
i

〉
as the concentration of 4He atoms, and x := 1 −

〈
S2
i

〉
as the fraction of 3He. We also define ∆ := µ3He − µ4He to be the difference of the chemical
potentials of 3He and 4He; since this parameter is related to the number of 3He and 4He atoms,
we expect that when x→ 0 (namely, there is only 4He) ∆→ −∞, while if x→ 1 then ∆→ +∞.

We consider the following Hamiltonian for the system11:

H = −J
∑
〈ij〉

SiSj + ∆
∑
i

S2
i −∆N

where N is the total number of lattice sites.
Since we want to apply the second variational method that we have seen, we write the mean
field probability density as:

ρm.f. =
∏
i

ρi =
∏
i

ρ(Si)

and the free energy:
Fρm.f. = 〈H〉ρm.f.

+ kBT
∑
i

Tr(ρi ln ρi)

The mean value of the Hamiltonian is:

〈H〉ρm.f.
= −J

∑
〈ij〉

〈SiSj〉ρm.f.
+ ∆

∑
i

〈
S2
i

〉
ρm.f.
−N∆

and since 〈SiSj〉ρm.f.
= 〈Si〉ρm.f.

〈Sj〉ρm.f.
(it’s the fundamental hypothesis of mean field theories)

we get12:

〈H〉ρm.f.
= −1

2
JNz 〈Si〉2ρm.f.

+N∆
〈
S2
i

〉
ρm.f.
−N∆

where z is the coordination number of the lattice. Therefore, the free energy of the system is:

Fρm.f. = −1

2
JNz (Tr(ρiSi))

2 +N∆ Tr(ρiS
2
i )−N∆ + kBTN Tr(ρi ln ρi)

We now must minimize this expression with respect to ρi, with the constraint Tr ρi = 1. Since
we have:

δ

δρj
(Tr(ρiSi))

2 = 2 Tr(ρiSi) · Sj = 2 〈Si〉Sj = 2mSj

δ

δρj
Tr(ρiS

2
i ) = S2

j

δ

δρj
Tr(ρi ln ρi) = ln ρj + 1

11We do not justify why it has this form; furthermore, the Hamiltonian we are considering is in reality a simplifi-
cation of the original one.

12We are introducing the 1/2 factor for later convenience. As we have stated in the footnote on page 98, this is
perfectly possible if we change the convention of the sum on nearest neighbours.
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then:
δ

δρi
Fρm.f. = −JNzmSi +N∆S2

i +NkBT ln ρi +NkBT = 0

which leads to:

ln ρi = βJzmSi − β∆S2
i − 1 ⇒ ρ(Si) =

1

A
eβ(zJmSi−∆S2

i )

where we have reabsorbed e−1 into the normalization constantA. From the constraint Tr ρi = 1
we find:

A = 1 + 2e−β∆ cosh(βzJm)

Substituting this expression of ρi into Fρm.f. , after some mathematical rearrangement we get:

Fρm.f.

N
=
z

2
Jm2 − kBT ln

[
1 + 2e−β∆ cosh(βzJm)

]
−∆

In order to find the equilibrium state for any T and ∆, we must minimize this expression with
respect to m.
If we expand Fρm.f. for smallm, keeping in mind the Taylor expansions coshx ∼ x+x2/2+O(x4)
and ln(1 + x) ∼ 1 + x− x2/2 +O(x3) we get:

Fρm.f.

N

m≈0∼ a+
b

2
m2 +

c

4
m4 +

d

6
m6 + · · ·

where:

a = −kBT ln(1 + 2e−β∆)−∆ b = zJ

(
1− zJ

δkBT

)
c =

zJ

2δ2
(βzJ)3

(
1− δ

3

)
and δ = 1 + eβ∆/2; d turns out to be always positive. Note that unlike the Ising model in the
Weiss approximation (see 6.1) in this case both the quadratic and the quartic terms, b and c, can
change sign when the parameters assume particular values.
Let us also note that the order parameter of the system, namely the concentration of 3He, is:

x = 1−
〈
S2
i

〉
=

1

1 + 2e−β∆ cosh(βzJm)

Therefore, in the disordered phase (both 3He and 4He are present) we have m = 0 and the
concentration of 3He becomes:

x =
1

1 + 2e−β∆
= 1− 1

δ

This way we can determine how the temperature of the λ transition depends on x; in fact, the
critical temperature will be the one that makes b change sign, so we can determine it from the
condition b = 0:

Tc =
zJ

kBδ

Since as we have just seen 1/δ = 1− x, we have:

Tc(x) = Tc(0)(1− x)

where Tc(0) = zJ/kB . The other transition (from the continuous λ to the discontinuous one)
will occur when the quartic term c changes sign, and so we can determine the critical value of
x at which it occurs from the condition c = 0:

1− δt
3

= 0 ⇒ δt = 3 ⇒ xt = 1− 1

3
=

2

3
= 0.6

which is in astonishingly good agreement with the experimental result of xt ≈ 0.67.
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6.4 Mean field theories for fluids

Ideal gases are exceedingly idealised systems and are not suited to describe the behaviour of
real systems: they always obey the same state equation and never undergo phase transitions
(for example they never condense).
We must therefore step a little further: using the “philosophy” of mean field theories we can
make the description of fluids a little bit more realistic. As we will see this will also lead to
the derivation of the Van der Waals equation, which better describes the behaviour of real fluids
(even if, as we will shortly see, it still has some problems).

In general, in a real gas all the atoms or molecules interact through a certain potential Φ({~ri})
that will depend on the positions of all the particles. For a system of N particles the configura-
tional contribution to the partition function will therefore be:

QN =

∫ N∏
i=1

d~rie
−β(

∑N
i=1 ϕext({~ri})+Φ({~ri}))

where ϕext is an external potential and in general:

Φ({~ri}) =
∑
i 6=j

U2(~ri, ~rj) +
∑
i 6=j 6=k

U3(~ri, ~rj , ~rk) + · · ·

(where Un can be a generic n-body interaction potential).
Generally ϕext does not pose great problems while it is Φ that makesQN impossible to compute
exactly, forcing us to resort to approximations. In the framework of mean field theories we
substitute the interaction potential Φ with an effective single-particle potential ϕ(~ri) that acts on
every particle in the same way: Φ({~ri}) ≈

∑
i ϕ(~ri).

Therefore, neglecting the external term for the sake of simplicity, mean field theories allow us
to compute QN as:

QN =

(∫
d~re−βϕ(~r)

)N
Of course, every particular mean field theory will provide a different form of ϕ, which will lead
to different results.

6.4.1 Van der Waals equation

The Van der Waals equation can be obtained considering the atoms of a gas as hard spheres. In
this case, in fact, the mean field ϕ has the form:

ϕ(~r) =

{
+∞ |~r| < r0

u |~r| ≥ r0

(6.13)

with u < 0 a parameter that in general can depend on N and V . In other words the particles
are modelled as spheres of radius r0: for large distances the potential is attractive, while for
short distances it is repulsive and prevents the atoms from overlapping. Note also that this is a
very rough first approximation: the potential, when attractive, does not depend on the distance
between the atoms, and ϕ is discontinuous. We will later see what happens when we make a
more realistic approximation.

Therefore, we will have:

e−βϕ(~r) =

{
0 |~r| < r0

e−βu |~r| ≥ r0
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v

P

T > Tc
T = Tc

T < Tc

Figure 6.3: Van der Waals isotherms for a = b = 1

and calling Vexc the volume that must be excluded because the particles are hard spheres
(namely the volume occupied by all the other atoms) the configurational partition function
will be:

QN =
[
(V − Vexc)e

−βu
]N

The configurational part of the free energy is thus:

F conf.
N = −NkBT [ln(V − Vexc)− βu]

We can determine the state equation of this system as usual (we derive only the configurational
part of FN because the kinetic one does not contain terms depending on V ):

P = −
∂F conf.

N

∂V
=

NkBT

V − Vexc
−N ∂u

∂V

Now, since u is the attractive term between the particles we can suppose that it is proportional
to the particle density (intuitively, if the system is dense the particles will be closer to each other
and will interact strongly), and of course the excluded volume Vexc will be proportional to the
number of particles; therefore, setting:

u = −aN
V

Vexc = bN a, b > 0

we have:

P =
NkBT

V −Nb
− a

(
N

V

)2

which is exactly Van der Waals equation. Defining v = V/N we can rewrite it as:

P =
kBT

v − b
− a

v2
(6.14)

Critical point of Van der Waals equation

The behaviour of the Van der Waals isotherms is shown in figure 6.3. As we can see this changes
with the temperature and resembles that of real isotherms (see figure 1.2b); however, Van der
Waals isotherms are always analytic and have a non physical behaviour in certain regions of
(v, P ) plane, called spinodal curves, if T < Tc: for some values of v we have ∂P/∂v > 0, which
is physically impossible. This is a consequence of the roughness of the approximation we have
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made, since it can be shown that it doesn’t ensure that the equilibrium state of the system glob-
ally minimizes the Gibbs free energy. As we will shortly see, however, this problem can be
solved “by hand” with Maxwell’s equal area rule.

Let us now see how to determine the critical point of a system obeying Van der Waals equation.
First of all, from the isotherms represented in figure 6.3 we can see that the critical point is a
flex for the critical isotherm (i.e. the one with T = Tc); in other words, we can determine the
critical point from the equations:

∂P

∂v
= 0

∂2P

∂v2
= 0

Equivalently, we can note that the equation P (v) = P = const. is cubic in v. In fact, we can
rewrite the Van der Waals equation (6.14) as:

v3 −
(
b+

kBT

P

)
v2 +

a

P
v − ab

P
= 0 (6.15)

For T > Tc equation (6.15) has one real solution and two imaginary ones, and for T < Tc three
distinct real solutions; when T = Tc the three solutions of the equation coincide. This means
that at the critical point equation (6.15) must be written in the form:

(v − vc)3 = v3 − 3vcv
2 + 3v2

cv − v3
c = 0

Equating the coefficients with the ones in equation (6.15) we get:

3vc = b+
kBTc
Pc

3v2
c =

a

Pc
v3
c =

ab

Pc

from which we have:

vc = 3b Pc =
a

27b2
Tc =

1

kB

8a

27b

We have found a very interesting result: in fact, if we can measure a and b at high temperatures
then we are able to determine the critical point of the system.

This model has also an interesting property, since it predicts that:

Pcvc
kBTc

=
3

8
= 0.375

which is a universal number, independent of a and b and so of the particular fluid considered.
Experimentally this ratio is approximately 0.29 for Argon, 0.23 for water and 0.31 for 4He.
Therefore, even if it is very rough, this model leads to reasonable conclusions.

Law of corresponding states

We can also rewrite Van der Waals equation (6.14) in an adimensional form, rescaling the ther-
modynamic quantities of the system. In particular, defining:

π :=
P

Pc
= P

27b2

a
ν :=

v

vc
=

v

3b
τ :=

T

Tc
= kBT

27b

8a

equation (6.14) becomes: (
π +

3

ν2

)
(3ν − 1) = 8τ (6.16)
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v

P

A

B

Figure 6.4: Maxwell’s equal area rule

We have found another very interesting result: when rescaled by their critical thermodynamic prop-
erties, all fluids obey the same state equation. This is the law of corresponding states that we have
already encountered in 1.5 (figure 1.6).
This is a form of universality, but substantially different from the one we have seen until now,
which applies only in the neighbourhood of a critical point: in fact, the law of corresponding
states applies everywhere on the phase diagram. It can even be shown that this law is a con-
sequence of dimensional analysis, and is more general than what might seem: experimentally
the law of corresponding states is well satisfied also by fluids which do not obey Van der Waals
equation.

Maxwell’s equal area rule

As we have previously anticipated, Maxwell’s equal area rule is a method to “manually” remove
the unphysical regions of Van der Waals isotherms.
From 1.2.2 we know that at the coexistence of two phases the chemical potentials and the pres-
sures of the two phases must be equal; furthermore, from 1.1.3 we also know that the chemical
potential is the Gibbs free energy per particle, namely G = µN , and in general we have also:

dG = −SdT + V dP + µdN

Now, differentiating G = µN and subtracting this last equation we get:

dµ = − S
N
dT +

V

N
dP

Therefore, since along an isotherm dT = 0, we will have:

µgas − µliq. =

∫ gas

liq.
dµ =

1

N

∫ gas

liq.
V dP = 0

Looking also at figure 6.4, we see that this means that the horizontal segment of the isotherm
must be drawn so that regions A and B have the same area (from which the name of the
method).

Critical behaviour

Let us now study the behaviour of systems obeying Van der Waals equations near the critical
point, computing one of the critical exponents.
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Exponent β This exponent13 can be computed from the shape of the coexistence curve for
T → T−c ; this can be done using the law of corresponding states. In fact, defining:

t :=
T − Tc
Tc

= τ − 1 % :=
V − Vc
Vc

= ν − 1

we can expand the law of corresponding states (6.16) near τ = ν = 1, or equivalently t = % = 0
(namely in the neighbourhood of the critical point):

π =
8τ

3ν − 1
− 3

ν2
=

8(1 + t)

3(1 + %)− 1
− 3

(1 + %)2
=

= (1 + t)

(
4− 6%+ 9%2 − 27

2
%3 + · · ·

)
− (3− 6%+ 9%2 − 12%3 + · · · ) ∼

∼ 1 + 4t− 6%t+ 9%2t− 3

2
%3 − 27

2
%3t+ · · ·

Therefore:
π = 1 + 4t− 6%t− 3

2
%3 +O(t%2, %4) (6.17)

where the terms we have neglected are justified a posteriori (i.e. we will see that % ∼ t1/2; we
could have not neglected them, but the result of the computation doesn’t change).
The strategy we want to apply is the following: since we want to determine how % changes
with t, we can determine the relation between the densities %g and %l in the gaseous and liquid
phase from Maxwell’s equal area rule. This way, from (6.17) we can determine the pressures in
the two phases and express them in terms of ρg or %l, and since πl = πg at the coexistence we
can obtain from this equation the behaviour of % in terms of t.

Therefore, from Maxwell’s equal area rule we have:∫ gas

liq.
vdP =

∫ gas

liq.
(%+ 1)vcPcdπ = 0

where we have used the definitions of π and %.
If we now set our system on an isotherm with t < 0 and t small (so that the expansion in (6.17)
makes sense), the variation of π in terms of % is:

dπ = −6td%− 9

2
%2d%

We thus have14:∫ %g

%l

%

(
−6t− 9

2
%2

)
d% = 0 ⇒ 3%2

g

(
t+

%2
g

8

)
= 3%2

l

(
t+

%2
l

8

)
Since t is small we can neglect it, and so:

%2
g = %2

l ⇒ %g = ±%l

13Remember that by definition β describes the behaviour of the order parameter in the neighbourhood of the
critical temperature, so we will have % ∼ |t|β .

14If we didn’t neglected the term of the expansion of π, we would have found:

−3%2
g

(
t− 2t%g +

3

8
%2

g

)
= −3%2

l

(
t− 2t%l +

3

8
%2

l

)
Again, the terms linear in t can be neglected since t is small (and %g, %l are just numbers). (???)
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Remembering that:

%l =
vl − vc
vc

%g =
vg − vc
vc

we see that the only acceptable solution is %g = −%l (since the volume of a gas is larger than
that of a liquid).
Therefore, substituting %g and %l = −%g into π we get:

πg = 1 + 4t− 6t%g −
3

2
%3

g πl = 1 + 4t+ 6t%g +
3

2
%3

g

Since πg = πl at the phase coexistence, we have:

3%g

(
4t+ %2

g

)
= 0

and excluding of course the case %g = 0, in the end:

%g ∼ t1/2

Therefore:
β =

1

2

which is what we could have expected from a mean field theory.

In fact, if we compute all the other critical exponent, we get exactly:

α = 0 β =
1

2
γ = 1 δ = 3 (6.18)

A more precise approximation

We have seen that the problem of Van der Waals equation comes from the rough approximation
that we have made in (6.13).
A better formulation of Van der Waals mean field theory can be done using the potential:

ϕ(~r) =

{
+∞ |~r| < r0

−ke−k|~r| |~r| ≥ r0

(6.19)

where k is a parameter that determines the range of the potential.
In this case (we don’t do the computations, we just state the result) after having computed the
partition function, in the limit k → 0 the potential becomes infinitely ranged and weak. The
interesting fact is that in this limit the theory becomes essentially the same that we have seen
before, but with the exception that there are no unphysical regions and Maxwell’s rule is no
longer necessary, since this model naturally predicts the existence of the “plateaux” relative to
the liquid-gaseous phase transition in (v, P ) plane.

6.4.2 Mean field theories for weakly interacting systems

If a system is composed of weakly interacting particles we can use perturbative methods to
compute the partition function of such systems.
For example, consider a fluid composed of N particles in a region of volume V , interacting
through a generic two-body potential that depends only on the relative distance between the
particles:

U({~r}) =
1

2

N∑
i 6=j=1

ϕ(|~ri − ~rj |)
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Its Hamiltonian will be:

H =

N∑
i=1

~pi
2

2m
+

1

2

N∑
i 6=j=1

ϕ(|~ri − ~rj |)

and its partition function:

ZN =
1

h3NN !

∫ N∏
i=1

d~qid~pie
−βH =

1

N !Λ3N
QN

where Λ is the thermal wavelength and QN is the configurational sum:

QN =

∫ ∏
i

d~rie
−βU({~ri})

Of course for ideal gases U = 0 and so QN = V N , and the dependence on the temperature is
included only in Λ; if we consider also the interaction terms we must insert a correction χ in
the configurational contribution to the partition function15:

QN = V N · χ(N,V, T )

which (depending on the possible presence of attractive terms in the interaction potential ϕ)
can in general be also a function of the temperature T ; furthermore the correction depends
strongly on the gas density: if it is low the particles will not “perceive” the presence of the
other ones and the ideal gas approximation is a good one, while for high densities the particles
will be closer to each other and corrections to QN are necessary.
Let us note that inserting the correction χ the free energy of the system will be:

F = Fideal − kBT lnχ

Virial and cluster expansion

The virial expansion is a systematic approach that can be used to incorporate the corrections due
to the interactions between the particles, and as we will shortly see it can be obtained from a
much general method, the cluster expansion.
The virial expansion consists in expanding the thermodynamic quantities of a system in powers
of the density ρ; for example, the virial expansion for the pressure of a gas is:

P

kBT
= ρ+B2ρ

2 +B3ρ
3 + · · ·

where Bn are called virial coefficients, and in general they can depend on the temperature. The
virial expansion is very useful because the coefficients Bn can be experimentally measured (for
example, in the case of the pressure they can be determined by properly fitting the isotherms of
a system), and as we will see they can be related to microscopic properties of the interparticle
interaction.
Let us see for example the virial expansion of the Van der Waals equation. From (6.14) we have:

P

kBT
=

N

V −Nb
− aN2

kBTV 2

which can be rewritten as:

P

kBT
=
N

V

(
1− bN

V

)−1

− a

kBT

(
N

V

)2

= ρ(1− bρ)−1 − a

kBT
ρ2

15We can always insert a multiplicative correction. We could have also written it as an additive correction, but
the core of the subject doesn’t change.
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where of course ρ = N/V is the density of the system. Therefore, expanding the first term in a
Taylor series:

P

kBT
= ρ+

(
b− a

kBT

)
ρ2 + b2ρ3 + b3ρ4 + · · · (6.20)

We can thus immediately identify the first virial coefficient:

B2(T ) = b− a

kBT

The temperature TB at which B2 vanishes is in general called Boyle temperature; in this case
TB = a

bkB
.

Now, let us see how the cluster expansion works and how we can obtain the virial expansion
from it. Of course, we start from the general configurational partition function:

QN =

∫ ∏
i

d~rie
−βU({~ri})

The idea is to find a “small quantity” in terms of which we can expand QN ; this quantity is the
so called Mayer function:

f(~r) = e−βϕ(~r) − 1

In fact, when the gas is ideal f(~r) = 0, and if the particles interact weakly ϕ is small, and so is
f(~r). In particular, this expansion will work well for low densities (namely |~ri−~rj | is large and
so ϕ(|~ri−~rj |)→ 0) or high temperatures (namely β → 0): in both cases, in fact, e−βϕ(|~ri−~rj |) → 1
and f(|~ri − ~rj |)→ 0.
Using the short notations ϕij = ϕ(|~ri − ~rj |) and fij = f(|~ri − ~rj |) we have:

e−β
1
2

∑N
i 6=j=1 ϕij =

∏
i 6=j

e−
β
2
ϕij =

∏
i 6=j

√
1 + fij =

=
√

1 + f12

√
1 + f13 · · ·

√
1 + f1N

√
1 + f21

√
1 + f23 · · ·

· · ·
√

1 + fN1

√
1 + fN2 · · ·

√
1 + fN,N−1

Now, since fij = fji by definition, in the end we will have:

e−β
1
2

∑N
i 6=j=1 ϕij = (1 + f12)(1 + f13) · · · = 1 +

1

2

N∑
i 6=j=1

fij + · · ·

where the missing terms contain the product of two or more Mayer functions. Therefore, the
configurational contribution to the partition function will be:

QN =

∫ N∏
k=1

d~rk

1 +
1

2

N∑
i 6=j=1

fij + · · ·

 = V N +

∫ N∏
k=1

d~rk
1

2

N∑
i 6=j=1

fij + · · · =

= V N + V N−2 1

2

N∑
i 6=j=1

∫
d~rid~rjfij + · · ·

where in the last step we have extracted the contributions of the integrals with k 6= i, j. Now,
the remaining integral can be easily computed with the definition of the new variable ~r = ~ri−~rj :∫

d~rid~rjfij =

∫
d~rid~rjf(|~ri − ~rj |) =

∫
d~ri

∫
d~rf(|~r|) = V

∫
d~rf(|~r|) := −2V B2
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where in the last step we have defined the first virial coefficient. Of course, we should have set∫
d~rf(|~r|) equal to a generic coefficient, but in the end we should have found exactly that this

coefficient is −2B2: we have done this for the sake of simplicity.
Therefore:

B2 = −1

2

∫
f(|~r|)d~r (6.21)

From this we see precisely how the first virial coefficient, which as we have already stated can
be experimentally measured, is related to the microscopic properties of the interaction between
the particles, represented by the Mayer function f .
It can also be shown that all the virial coefficients can be expressed in terms of integrals of
products of Mayer functions; for example the second virial coefficient is:

B3 = −1

3

∫
d~rd~sf(|~r|)f(|~s|)f(|~r − ~s|)

Higher order coefficients involve the computation of increasingly difficult integrals, which can
however be visualized in terms of graphs.

What we have seen now is how the cluster expansion works in general. Let us now apply it in
order to find the virial expansion for real gases.
From what we have found, the configurational partition function of the system becomes:

QN = V N − V N−1B2

N∑
i 6=j=1

1 + · · ·

The remaining sum is equal to N(N − 1): in fact, for any of the N values that i can assume, j
can have N − 1 values. Therefore:

QN = V N − V N−1N(N − 1)B2 + · · ·

and, considering that N − 1 ≈ N for large N , the complete partition function of the system will
be:

ZN =
V N

N !Λ3N

(
1− N2

V
B2 + · · ·

)
We recognise in this expression that (1 + B2N

2/V + · · · ) is the correction χ to the ideal gas
partition function that we have mentioned earlier; therefore, the free energy of the system will
be:

F = Fideal − kBT ln

(
1− N2

V
B2 + · · ·

)
and its pressure:

P = −∂F
∂V |N,T

=
NkBT

V
+ kBT

N2

V 2B2

1− N2

V B2

+ · · · = NkBT

V

(
1 +

N
V B2

1− N2

V B2

+ · · ·

)
Now, neglecting the terms involving Bn with n ≥ 3, and expanding in terms of B2 (in fact
B2 ∼ f , which is small)16:

P =
NkBT

V

(
1 +

N

V
B2 + · · ·

)
(6.22)

16Referring to what we have stated previously, if we set
∫
d~rf(|~r|) = F with F a generic constant, then we should

have found:

QN = V N
(

1 +
N(N − 1)

V
· F

2
+ · · ·

)
and proceeding like we have done now, in the end:

P =
NkBT

V

(
1− N

V
· F

2
+ · · ·

)
and so from (6.20) we see that indeed F = −2B2.
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This expansion contains only low-order terms in the density N/V , so strictly speaking it is
valid only for low densities. However, we can use a “trick” in order to extend its range; in fact,
remembering that the McLaurin expansion of (1− x)−1 is 1 + x+ · · · , from (6.22) we can write:

PV

NkBT
= 1 +B2ρ+ · · · ≈ 1

1−B2ρ

and now re-expand (1−B2ρ)−1, so that we can express all the virial coefficients in terms of the
first one:

1

1−B2ρ
= 1 +B2ρ+ (B2)2ρ2 + (B2)3ρ3 + · · · ⇒

⇒ PV

NkBT
=

P

ρkBT
= 1 +B2ρ+ (B2)2ρ2 + (B2)3ρ3 + · · · ⇒

⇒ P

kBT
= ρ+B2ρ

2 + (B2)2ρ3 + (B2)3ρ4 + · · ·

So in the end:

B3 ∼ (B2)2 B4 ∼ (B2)3 · · · Bn ∼ (B2)n−1

Computation of virial coefficients for some interaction potentials

Let us now see this method in action by explicitly computing some coefficientsB2 for particular
interaction potentials.

Hard sphere potential As a first trial, we use a hard sphere potential (6.13) similar to the one
we have seen for the derivation of the Van der Waals equation:

ϕ(~r) =

{
+∞ |~r| < r0

0 |~r| ≥ r0

(the difference with (6.13) is that now the potential is purely repulsive, and has no attractive
component).
In this case:

f(~r) = e−βϕ(~r) − 1 =

{
−1 |~r| < r0

0 |~r| ≥ r0

Therefore, using (6.21) and shifting to spherical coordinates:

B2 = −1

2

∫
f(|~r|)d~r = −1

2

∫ +∞

0
4πr2

(
e−βϕ(r) − 1

)
dr = 2π

∫ r0

0
r2dr =

2

3
πr3

0

In this case B2 does not depend on the temperature, and in the end we have:

PV = NkBT

(
1 +

2

3
πr3

0

N

V

)

Square well potential We now use a slight refinement of the previous potential:

ϕ(~r) =


+∞ |~r| < r0

−ε r0 < |~r| < r0 + δ

0 |~r| > r0 + δ
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This can be seen as a hard sphere potential where the spheres have an attractive shell of thick-
ness δ.
We thus have:

f(~r) =


−1 |~r| < r0

eβε − 1 r0 < |~r| < r0 + δ

0 |~r| > r0 + δ

so that:

B2 = −1

2

∫
f(|~r|)d~r = −1

2

∫
4πr2f(r)dr = −2π

[∫ r0

0
(−r2)dr +

∫ r0+δ

r0

(
eβε − 1

)
r2dr

]
=

= −2π

{
−r

3
0

3
+
eβε − 1

3

[
(r0 + δ)3 − r3

0

]}
= Bh.s.

2 − 2

3
π
(
eβε − 1

) [
(r0 + δ)3 − r3

0

]
where Bh.s.

2 is the first virial coefficient of the hard sphere potential we have previously seen.
Now, if the temperature is sufficiently high, namely βε� 1, we can approximate eβε − 1 ≈ βε,
so that:

B2 = Bh.s.
2 − 2

3
πβεr3

0

[(
1 +

δ

r0

)3

− 1

]
For the sake of simplicity, defining:

λ :=

(
1 +

δ

r0

)3

− 1

we will have, in the end:

PV

NkBT
= 1 +B2ρ = 1 +

(
Bh.s.

2 − 2

3

πε

kBT
r3

0λ

)
ρ

so in this case B2 actually depends on the temperature.

Lennard-Jones potential This potential is a quite realistic representation of the interatomic
interactions. It is defined as:

ϕ(~r) = 4ε

[(
r0

|~r|

)12

−
(
r0

|~r|

)6
]

which contains a long-range attractive term (the one proportional to 1/|~r|6, which can be jus-
tified in terms of electric dipole fluctuations) and a short-range repulsive one (proportional to
1/|~r|12, which comes from the overlap of the electron orbitals).
With this interaction potential, the first virial coefficient is:

B2 = −2π

∫ +∞

0
r2

{
e
− 4ε
kBT

[(
r0
|~r|

)12
−
(
r0
|~r|

)6
]
− 1

}
dr

which is not analytically computable. However, it can be simplified defining the variables
x = r/r0 and T ∗ = kBT/ε so that:

B2 =
2

3
πr3

0

4

T ∗

∫ ∞
0

x2

(
12

x12
− 6

x6

)
e
− 4
T∗

(
1
x12−

1
x6

)
dx
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Now, we can expand the exponential and integrate term by term; this gives an expression of
B2 as a power series of 1/T ∗:

B2 = −2A

∞∑
n=0

1

4n!
Γ

(
2n− 1

4

)(
1

T ∗

)(2n+1)/4

where Γ is the Euler gamma function and A is a constant.
Note that the attractive part of the Lennard-Jones potential has introduced in B2 a dependence
on the temperature.

6.5 Landau theory

6.5.1 Introduction

Landau theory is a phenomenological mean field theory that aims at describing the occurence of
phase transitions in a unitary framework.

We have already stated that even very different many-particle systems exhibit universality: we
have seen this explicitly in 1.5, but also in the study of mean field theories we have that two
very different systems, namely an Ising magnet in the Weiss approximation and a fluid in the
Van der Waals theory, have the very same critical exponents (see equations (6.7) and (6.18)).
The reason of this fact can be understood if we expand the state equations of these systems in
terms of their order parameters. In fact, considering the Van der Waals theory for fluids we
have seen in 6.4.1 that:

π = 1 + 4t− 6ηt− 3

2
η3 +O(η4, η2t)

where we have called η := % the order parameter.
In a similar way we can expand the state equation of an Ising model in the Weiss approxima-
tion. In this case we get:

H

kBT
= ηt+ η3 +O(tη3)

where η := m is again the order parameter.
Therefore we can see how the two equations of state, when expanded around a critical point,
behave in the same way, i.e. they involve the same powers of the order parameter η: this is
why these two very different systems exhibit the same critical exponents.

From these very simple examples we can prefigure that the properties and the possible occur-
rence of phase transitions of every universality class can be described once we have expanded
the state equation of the system in terms of its order parameter (whatever it is, and indepen-
dently of its nature).
These kinds of observations led Landau to suggest that such considerations can be done for all
phase transitions, at least qualitatively. The resulting theory, which we now proceed to study,
is the so called Landau theory for phase transitions.

6.5.2 Assumptions of Landau theory

Landau theory is based on some assumptions, which we now introduce:

– There exists an order parameter η for the system, such that:{
η = 0 T > T

η 6= 0 T < T
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– There exists a function L called Landau free energy17, which is an analytic function of the
coupling constants {Ki} of the system and of the order parameter η.
Therefore, near T we can expand L for small η:

L =
∞∑
n=0

anη
n = a0 + a1η + a2η

2 + a3η
3 + a4η

4 +O(η5)

– L has to be consistent with the symmetries of the system

– The equilibrium states of the system are the global minima of Lwith respect to η

We also assume that the thermodynamic properties of the system can be obtained by differen-
tiating L, just like we can do with thermodynamic potentials.18

From these assumption we can explicitly construct L, depending of course on the system con-
sidered.

Note also that the general formulation of the Landau theory does not depend on the dimen-
sionality of the system (although we will see that once a system has been chosen some details
can depend on it).

6.5.3 Landau theory for the Ising model

To make things clearer, let us now consider the Ising model without any external field and see
how we can determine the form of L from the general assumptions we have introduced.

Construction of L

First of all, since the equilibrium configurations of the system must be minima of L:

∂L
∂η

= a1 + 2a2η + 3a3η
2 + 4a4η

3 = 0

where we have chosen to stop the expansion at the fourth order19. Now, since this equation
must hold for all T and for T > T we have η = 0, we see that a1 = 0.

Considering now the constraint on the symmetries of the system, in 5.3.3 we have seen that
the Ising model is invariant under parity, i.e. its Hamiltonian is simultaneously even in H and
{Si}: H(H, {Si}) = H(−H, {−Si}). Thus, in absence of external fields the Hamiltonian of the
Ising model is even; this means that also L must be invariant under parity, namely an even
function of η: L(−η) = L(η). Therefore all the odd terms of the expansion are null:

a2k+1 = 0 ∀k ∈ N

Finally, since we have assumed that L is an analytic function of η then its expansion cannot
contain terms like |η|.

17To be more precise, L is the Landau free energy density; the “real” Landau free energy should be L = V L.
18Strictly speaking, Landau free energy is not really a thermodynamic potential: the correct interpretation of L

(see [3], 5.6.1) is that it is a coarse grained free energy (not the exact one); see 6.6.2 for coarse graining procedures.
19This choice has been made because we suppose η to be small and also because in both the Weiss and Van der

Waals theories we have seen that the relevant physics involves third and fourth powers of the order parameter. Of
course, the choice of where to stop the expansion depends on the system considered (in particular, it depends also
on the dimensionality of the system).
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In conclusion, the minimal form of the Landau free energy for the Ising model is:

L = a0 + a2η
2 + a4η

4 (6.23)

where a0, a2 and a4 can in general be functions of Jij (the coupling constants) and T .
However, (6.23) can be further simplified and we can also explicitly show its dependence on
the temperature.
In fact, first of all we can note that a0 is the value of L in the paramagnetic state (when T > T ,
η = η = 0 and L(η) = a0), and so for simplicity we can set a0 = 0 (it’s just a constant shift in
the energy).
Then, we must also require a4 > 0 because otherwise L can be minimized by η → ±∞, which
makes no sense physically.
Finally, expanding a2 and a4 in T near T :

a2 = a0
2 + t

a

2
+ · · · a4 =

b

4
+ · · ·

where we have renamed the constants this way for later convenience, and t = (T − T )/T is
the reduced temperature; in the expansion of a4 we have neglected any explicit dependence on
T − T because as we will see it will not dominate the behaviour of the thermodynamics near
T 20.
Taking a0

2 = 0 we finally have that the form of the Landau free energy for the Ising model is:

L =
a

2
tη2 +

b

4
η4 (6.24)

If an external field H is present, then:

L =
a

2
tη2 +

b

4
η4 −Hη (6.25)

Critical properties of the Landau theory for the Ising model

Let us now see what does the Landau theory for the Ising model predict.
First of all, in the absence of external fields from (6.24) we have that the equilibrium states are
determined by:

∂L
∂η

= aηt+ bη3 = η(at− bη2) = 0 ⇒ η = η =

{
0 t > 0 (i.e. T > T )
±
√
−at/b t < 0 (i.e. T < T )

We therefore see that a phase transition really occurs: when the temperature is greater than
the critical one, the only global minimum of L is η = 0, while for T < T two possible new
equilibrium states appear (which of course are the two possible values that the spontaneous
magnetization can assume in the magnetic phase).

Let us therefore see what critical exponents does the Landau theory for the Ising model predict.

Exponent β This is immediately determined from what we have just seen:

η = ±
(
−a
b
t
)1/2

∼ (−t)1/2 when t < 0 ⇒ β =
1

2
20In other words, the occurrence of the phase transition at T = T depends only on how a2 depends on t.
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Exponent α The specific heat at constant external field of the system is CH = −T∂2L/∂T 2; as
we have seen, L = 0 for t > 0 (since we have set a0

2 = 0) while L = L(η) = −a2t2/4b for t < 0.
Therefore:

CH =

{
0 t > 0
a2

2bT
2T t < 0

We thus see that CH has a jump discontinuity at T = T , so:

α = 0

Exponent δ Considering now also an external field, the state equation of the system will be
given by the differentiation of (6.25):

∂L
∂η

= atη + bη3 −H = 0 ⇒ atη + bη3 = H

At the critical point t = 0 and so we have H ∝ η3. Therefore:

δ = 3

Exponent γ If we now differentiate the state equation with respect to H we get:

at
∂η

∂H
+ 3bη2 ∂η

∂H
= 1

Since ∂η/∂H = χT , then:

χT =
1

at+ 3bη2

If we now set H = 0 then for t > 0 we will have η = η = 0 and thus χT = (at)−1; on the other
hand, if t < 0 then η = η = ±(−at/b)1/2 and therefore χT = (−2at)−1. In both cases χT ∼ t−1,
and thus:

γ = 1

Therefore, the Landau theory for the Ising model gives the critical exponents:

α = 0 β =
1

2
γ = 1 δ = 3

which, as we expected, are identical to those we have found within Weiss mean field theory
(see equation (6.7)).

6.5.4 First-order phase transitions in Landau theory

As we have seen, Landau theory is based on the assumption that the order parameter is small
near the critical point, and we have seen in the example of the Ising model how it can describe
a continuous phase transition (in fact, for t → 0 we have η → 0). However, because of the
symmetry properties of the Ising model we have excluded any possible cubic term; what we
now want to do is to consider a more general form of L which includes also a cubic term in η,
and see that this leads to the occurrence of a first-order phase transition.
We have seen that since the order parameter is null for T > T the Landau free energy can’t
contain any linear term in η. Let us therefore consider:

L =
a

2
tη2 − wη3 +

b

4
η4 −Hη t =

T − T
2
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η

L(η)
T > T ∗

T = T ∗

T ∗∗ < T < T ∗

T = T ∗∗

T < T < T ∗∗

(a) First-order transition

η

L(η)
T > T ∗

T < T < T ∗∗

T < T

(b) Same transition for lower values of the tempera-
ture

Figure 6.5: Behaviour of L for different values of T

where we choose w > 0 and we have redefined t for convenience; as in the previous case, we
must have b > 0 so that η has finite values in the equilibrium configurations. The temperature
T is the one at which we have the continuous transition if w = 0, but as we will see it doesn’t
have great significance now.
The equilibrium configurations of the system, in absence of external fields, will be given by:

∂L
∂η

= atη − 3wη2 + bη3 = 0 ⇒ η(at− 3wη + bη2) = 0

The solutions of this equation are η = η = 0 (disordered phase) and:

η± =
3w ±

√
9w2 − 4atb

2b
= c±

√
c2 − at

b

which correspond to the ordered phase, and for the sake of simplicity in the last step we have
defined:

c :=
3w

2b

However, these two last solutions are possible only if:

c2 − at

b
> 0 ⇒ t < t∗ :=

bc2

a

Let us note that since t∗ is positive, this will occur at temperatures higher than T (because for
T = T we have t = 0).
Intuitively, since L → ∞ for η → +∞ and L → 0 for η → 0, we understand that η− will be a
maximum while η+ a minimum (see also figure 6.5).
We therefore have that the introduction of the cubic term brings to an asymmetry in L which
leads to the formation of another minimum at η = η+ for T < T ∗.

Let us try to understand how L behaves as a function of T , by also explicitly plotting L as
shown in figure 6.521. If we start from T > T ∗, then the system will be in the disordered phase
and L will have only one minimum at η = η = 0. When T becomes smaller than T ∗ a new
minimum appears at η = η+, but at the beginning we will have L(η+) > 0 so this is only a local
minimum (since L(0) = 0): in this range of temperatures the ordered phase is metastable. If we
further decrease the temperature, we will reach a temperature T ∗∗ for which L(η+) = 0 = L(0):

21Of course all these considerations can be made more rigorous with a complete study of the function L, which
we don’t do since it is rather straightforward and not illuminating.
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at this point the ordered and disordered phase coexist, so this is the temperature of a new tran-
sition! If we now further decrease the temperature to values lower than T ∗∗, L(η+) becomes
negative and so now η+ is the global minimum of L: the ordered phase becomes stable and the
disordered phase metastable.
If now T becomes smaller than T , L develops a new minimum for η < 0, but it is only a local
minimum (the asymmetry introduced by−wη3 ensures that η+ is always the global minimum).
This means that also for T < T the disordered phase with η = η+ continues to be the stable
one, and so no phase transition occurs at T any more; this is what we meant when we said that
T is not a relevant temperature any more.
Therefore, we see that lowering the temperature of the system the value of η for which L has a
global minimum changes discontinuously from η = 0 to η = η+: this is a first-order transition.

As we have seen, the temperature T ∗∗ at which this first-order transition occurs is defined by
two conditions: it must be a minimum of L and such that the value of L in that minimum is
zero. Thus we can determine T ∗∗ as follows:{

∂L
∂η = η(at− 3wη + bη2) = 0

L(η) = η2
(
a
2 t− wη + b

4η
2
)

= 0

η 6=0
=⇒

{
at− 3wη + bη2 = 0
a
2 t− wη + b

4η
2 = 0

Solving this system for t and η, we get:

η = η∗∗ = 2
w

b
t = t∗∗ = 2

w2

ab

Since by definition t = (T − T )/2, we have:

T ∗∗ = T + 4
w2

ab

Now, since the one we have found is a first order transition, there must be an associated latent
heat. Landau theory allows us to determine it; in fact, if we determine the entropy density at
the transition:

s = −∂L
∂T |η∗∗

= −4a
w2

b2

then the latent heat absorbed during the process will be:

Q = −T ∗∗s = 4aT ∗∗
w2

b2

Finally, we can also determine the susceptibility of the system. In the presence of an external
field, the equation of state of the system is:

∂L
∂η

= 0 ⇒ atη − 3wη2 + bη3 = H

If we now derive both sides with respect to H , since χT = ∂η/∂H we have:

atχT − 6wηχT − 3bη2χT = 1 ⇒ χT =
1

at− 6wη + 3bη2

Multicritical points in Landau theory

It is possible for a system to have more “disarranging parameters” than the sole temperature
T ; let us call one such field ∆. In this case the phase diagram of the system becomes richer,
with coexistence and critical lines that intersect in points called multicritical points; one of the
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η

L(η)

Figure 6.6: First-order transition with an even L

most common examples of a multicritical point is the tricritical point, which divides a first-order
transition line from a second-order one.
An example of a system of the type we are considering is the Blume-Emery-Griffiths model,
which we have studied in 6.3.3. In that case the additional “disarranging field” was the con-
centration x of 3He, and the tricritical point is the one we called (xt, Tt).

Such a phenomenology can be obtained within Landau theory also with terms different from a
simple cubic one; in particular, we can have first order phase transitions even when the system
is invariant under parity, like in the case of the Ising model. In fact in that situation we required
the coefficient of η4 to be always positive, but if this is not true then Lwill be:

L =
a

2
η2 +

b

4
η4 +

c

6
η6 (6.26)

where a, b and c are functions of T and ∆, and c must always be positive for the stability of
the system (otherwise, like in the case previously considered, the minimization of L leads η to
infinity).
Now, we know that if a changes sign and b is kept positive (which can be done varying the
values of T and ∆ in a way such that a goes to zero faster than b, depending of course on their
explicit expressions) then a critical transition occurs since in this case η = 0 becomes a local
maximum for L, and it develops two new global minima. Therefore, the solution of the equa-
tion a(T,∆) = 0 will give a line of critical points in (T,∆) plane.
However, if b becomes negative while a is still positive (which again can be done varying T
and ∆ so that b vanishes faster than a) then something rather different happens: as we can see
from figure 6.6, in this case as b approaches zero L develops two new symmetric local minima
at η± (similarly to the case analysed before, with the difference that now the situation is per-
fectly symmetric since L is even) and they will become the new global minima as L(η±) = 0,
which happens when b changes sign: this way the equilibrium value of the order parameter
change discontinuously from zero to a non-zero quantity so a first-order transition has indeed
happened.
This means that when both a and b are null the system goes from exhibiting a continuous criti-
cal transition to a discontinuous first-order one; in other words, the tricritical point (Tc,∆c) can
be determined from the solution of the equations a(T,∆) = 0 and b(T,∆) = 0.

To conclude let us consider again a system whose Landau free energy is given by (6.26) (to be
concrete we still think about an Ising model), where c > 0 and a, b are in general functions
of the reduced temperature t (and also of the other “disarranging” parameter, which we now
neglect). We now want to show that we can understand how the phase diagram of the system
is in (a, b) space, i.e. that we can draw where the phase transition lines are and so we are able
to visually represents where the various phases of the system are in (a, b) plane.
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Figure 6.7: Phase diagram of the system in (a, b) space

First of all, we can note that when a, b > 0 the only minimum of L is η = 0, so the system
is in the paramagnetic phase. Furthermore if a < 0 and b > 0 the system is in the magnetic
phase, and a second order transition has occurred; therefore we can surely say that the half-line
(a = 0, b > 0) is a second order transition line.
We must thus determine where the first order transition line lies in (a, b) space.
In order to do so, we first note that the extrema of L are given by:

0 =
∂L
∂η

= η(a+ bη2 + cη4) ⇒ η2
± =

−b±
√
b2 − 4ac

2c

(and of course they exist only when the temperature is such that b2 − 4ac > 0) and since:

∂2L
∂η2

|η±
= ±η2

± · 2
√
b2 − 4ac

we have that ±η+ are maxima while ±η− are minima.
The first order transition happens when L(±η+) = L(0) = 0, so:

a

2
η2

+ +
b

4
η4

+ +
c

6
η6

+ = 0 ⇒ a

2
+
b

4
η2

+ +
c

6
η4

+ = 0

Now, from the condition ∂L/∂η = 0 we can express η4
+ as a function of η2

+, and we get η4
+ =

−(a+ bη2
+)/c. Substituting we get:

η2
+ = −4

a

b

and substituting again in η2
+ = (−b+

√
b2 − 4ac )/(2c) in the end we get:

b = −4

√
ac

3

so the first order transition line is a parabola in (a, b) plane (in particular it will lie in the fourth
quadrant). In the end the situation is that shown in figure 6.7. As we can see the tricritical point
of the system, being the point that divides the first-order from the second-order transition line,
is the origin (0, 0) of the parameter space.

We conclude by noting that in such situations strange things can happen; in particular we
can show that if we move through the tricritical point along the a axis (thus keeping b = 0) the
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critical exponents of the system change from the “trivial” ones predicted by mean field theories.
In fact if b = 0 then the Landau free energy is L = aη2/2 + cη6/6 and its minima are given by:

0 =
∂L
∂η

= η(a+ cη4)

Excluding the case η = 0 and supposing that a ∼ t we get:

η ∼
(
−a
c

)1/4
∼ (−t)1/4 ⇒ β =

1

4

Furthermore, the state equation of the system in the presence of an external field h will be:

h =
∂L
∂η

= η(a+ cη4)

and at the critical temperature a = 0, so that in the end:

h = cm5 ⇒ δ = 5

Analogous computations for the other critical exponents give γ = 1 and α = 1/2.

We therefore see that the critical exponents do indeed change if the system passes through its
tricritical point in the phase diagram.

6.5.5 Liquid crystals

We now proceed to study a particular physical system, liquid crystals, to which we will apply
Landau theory of phase transitions. As we will see the symmetries of the system will allow the
Landau free energy to include a cubic term in the order parameter (which we will properly de-
fine), and so we will be able to describe the first-order transition from an isotropic to a nematic
phase (which we are now going to introduce).

What are liquid crystals?

Liquid crystals can be seen as an intermediate phase between a liquid and a solid: they are
liquid like any other conventional fluid, but also have internal orientetional order like solid
crystals. This orientational order provides them particular anisotropic properties from an opti-
cal, electric and magnetic point of view.
The most common structural characteristics of the molecules that constitute liquid crystals are
the following:

– They have an elongated, anisotrpic shape

– Their axes can be considered rigid with good approximation

– They have strong electric dipoles or easily polarizable groups

Furthermore, it seems that the groups located at the extremities of a molecule are not relevant
for the formation of phases.

The vast majority of the interesting phenomenology of liquid crystals concerns the geometry
and dynamics of the preferred axis of orientation ~n(~r), called director (and generally it is as-
sumed to be unitary, i.e. |~n(~r)| = 1). Since it just defines the direction of orientation, the
direction of ~n is irrelevant, i.e. ~n and −~n are physically equivalent.
There is a plethora of possible liquid crystal phases; the most common are:
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Figure 6.8: Graphical representation of the nematic, smectic and cholesteric phases of a liquid
crystal (source)

nematic: This phase is characterized by a very strong long-ranged orientational order: the
main axes of the molecules tend to orientate along a preferred direction, determined by
the director. There is no long-ranged translational order of the molecular centers of mass,
even if a short-ranged one can exist.
From an optical point of view, nematic liquid crystals are birefringent, i.e. they exhibit
two different refractive indexes: one parallel to the director (called ordinary refractive in-
dex) and one orthogonal to it (special refractive index). These optical properties of the ne-
matic phase are used to build devices like LCDs.

smectic: Also in this phase the molecules are aligned along a preferred direction, but contrarily
to the nematic one this phase has also a spatial periodic order: the molecules are organ-
ised in layers. Furthermore, differently from nematic phases, smectic liquid crystals have
non-uniform density and are generally more viscous.

cholesteric: It is similar to the nematic phase since it has a long-ranged orientational order, but
the direction of ~n changes regularly in space; the typical configuration of a cholesteric
liquid crystal has a director ~n(~r) that rotates when ~r varies along a particular direction:
for example, in a three-dimensional reference frame the molecules are orientated along
the y direction in xy plane, but this direction roteates if z changes.
The structure of a cholesteric liquid crystal is characterised by the spatial distance along
the torsion axis, called pitch, after which the director has rotated by an angle of 2π.22 The
pitch of the most common cholesteric liquid crystals is of the order of several hundred
nanometers, so comparable with the wavelength of visible light; furthermore, it can also
be very sensitive to changes in temperature, chemical composition, or external electro-
magnetic fields.
Note also that a nematic liquid crystal can be seen as a cholesteric one with infinite pitch;
these two phases in fact are not independent from each other, and there is no real phase
transition between them.

Definition of an order parameter for nematic liquid crystals

What we now want to do is to apply Landau theory to liquid crystals in order to study the
transition from an isotropic to a nematic phase; therefore, we must define an order parameter
for such a system. This is absolutely not trivial, and there are two ways to do it (even if as we
will shortly see only one is really useful): a microscopic and a macroscopic one.

22Note that in reality the periodicity of the rotation is a half of the pitch, since the direction of ~n is irrelevant.

http://chemwiki.ucdavis.edu/?title=Textbook_Maps/General_Chemistry_Textbook_Maps/Map:_Chemistry_(Averill_%26_Eldredge)/11:_Liquids/11.8:_Liquid_Crystals
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Microscopic approach Since in the nematic phase the important order is the orientational
one, the director ~n(~r) could be a good candidate as an order parameter; however, it only gives
the mean orientation direction and no information about the degree of orientation, i.e. how
much dispersion does the molecular orientational distribution have with respect to its mean
value. Let us therefore look for something that also carries this information.

We can, for example, consider a small spherical portion of our system and try to “build” a
probability distribution of the directions of orientation; this way we can compute its mean
value (given by ~n) but also higher moments like the standard deviation, which could be a good
measure of the degree of orientation.
In order to estimate this distribution we can approximate every molecule with a rigid stick with
cylindrical symmetry around a versor ~a, which is therefore the orientation of a single molecule.
If we suppose ~n to be parallel to the z axis, then we can identify ~awith the polar angles θ (colat-
itude) and φ (longitude). This way we can call f(θ, φ) the orientational probability distribution,
namely f(θ, φ)dΩ is the probability to find a molecule oriented along (θ, φ) in the solid angle
dΩ = sin θdθdφ. From the symmetries of the system, f has the following properties:

– Since the system has cylindrical symmetry f does not depend on ϕ, so it is only a function
f(θ) of θ

– Since ~n and −~n are physically equivalent, f(θ) = f(π − θ)

– f(θ) is even, again because the direction of ~n is irrelevant

Instead of a function, we could look for a scalar order parameter, since it is more easy to han-
dle. The simplest possibility could be the mean value of the projection of the single molecule
orientation ~a on the director ~n:

〈~a · ~n〉 = 〈cos θ〉 =

∫
f(θ) cos θdΩ

However, this parameter is not really useful, since from the symmetry properties of f is null.

Now, in general a function g expressed in polar coordinates, i.e. which depends on θ and ϕ,
can be expanded in multipoles, namely it can be written as a linear combination of spherical
harmonics:

g(θ, φ) =
∞∑
`=0

∑̀
m=−`

Cm` Y
m
` (θ, φ)

where Y m
` are the spherical harmonics. The components with ` = 0 are called monopoles, the

ones with ` = 1 dipoles, with ` = 2 quadrupoles, ` = 3 octupoles and so on. Remember that in
general:

Y m
` (θ, φ) = (−1)m

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ

where Pm` (cos θ) are the Legendre polynomials.
Since our distribution f(θ) is even, we must discard any spherical harmonic involving sin θ,
and among the monopoles also Y 0

1 must be discarded since it is proportional to cos θ (and we
have seen before that 〈cos θ〉 = 0). Therefore, the first nontrivial multipole that we can use is
the quadrupole Y 0

2 :

Y 0
2 (θ, φ) =

1

4

√
5

π

(
3 cos2 θ − 1

)
with which we can define the parameter (neglecting the normalization constant of Y 0

2 ):

S :=
1

2

〈
3 cos2 θ − 1

〉
=

∫
f(θ)

3 cos2 θ − 1

2
dΩ
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This function is a good first approximation of the molecular degree of orientation, even if a
more accurate description would require higher multipoles (i.e. higher even powers of cos θ).
From its definition, we can deduce some properties of S:

– If f(θ) is sharply peaked around 0 and π, i.e. if nearly all the molecules are aligned, then
cos θ = ±1 and S = 1

– If f(θ) is peaked around π/2, i.e. if the molecules lie on a plane orthogonal to the director
and on this plane are randomnly oriented, S = −1/2

– If the molecular orientation si completely random, f is constantly equal to 1/2π and so:

S =

∫
1

2π

3 cos2 θ − 1

2
dΩ =

3

4π

∫
cos2 θdΩ− 1

and since: ∫
cos2 θdΩ = 2π

∫ π

0
cos2 θ sin θdθ = 2π

(
−1

3
cos3 θ

)π
0

= 2π
2

3

then:

S =
3

4π

4π

3
− 1 = 0

which makes sense since S is our candidate order parameter and in this case the system
is in its disordered phase23

Therefore, once the director ~n and the parameter S are known, we can define the state of a
nematic liquid crystal; for example, the director can be defined in terms of its polar angles θ
and φ in a given reference frame:

~n =

cos θ cosφ
cos θ sinφ

sin θ


and a theory for the nematic phase of the liquid crystal can be built using the variables:

θ(~r, t) φ(~r, t) S(~r, t)

(in fact, in general they depend on the point of the system considered, and also on time).

This approach, however, poses some problems: the fact that we are using polar coordinates
leads to some mathematical problems, since when θ = π/2 the angle φ is not well defined;
furthermore, this approach is useful if we consider a uniaxial nematic liquid crystal but things
start getting quite complicated if we try to describe biaxial nematic phases.

As we will now see a more useful approach consist in adopting a “macroscopic” perspective,
which will however lead to the definition of a more complex (but also more powerful) order
parameter.

23A remark: even if in principle is possible for the system to be in configurations where S is negative, it is more
common that the equilibrium states of the liquid crystal have S positive, so we can think that as the temperature
varies the order parameter goes from 0 (isotropic phase) to 1 (nematic phase).
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Macroscopic approach From a macroscopic point of view we have already stated that an
important difference between the disordered and nematic phases consists in the response func-
tions when the liquid crystal is subjected to magnetic or electrical fields.
Supposing then that we have a liquid crystal subject to an external magnetic field ~H , the mag-
netic response of the system will be measurable in terms of its magnetization ~M , and in partic-
ular:

~M = χ ~H

where χ is the response function matrix, namely the magnetic susceptibility of the system. In
componets we have:

Mα = χαβHβ

where the indexes α, β stand for x, y or z.
If ~H is static then χ is symmetric, i.e. χαβ = χβα; in the isotropic phase χ will also be diagonal,
namely χαβ = χδαβ , while in the nematic phase:

χ =

χ⊥ 0 0
0 χ⊥ 0
0 0 χ‖


where, as before, we have supposed that the director ~n is parallel to the z direction.

Therefore we could build an order parameter in terms of the susceptibility χ, and this parame-
ter will necessarily have a tensorial nature24 (since χ itself is in general a tensor), so it will not
be a simple scalar like in the previous case.
Since we want our order parameter to vanish in the disordered phase, we can define it “remov-
ing” from χ its isotropic component. In other words, in components we can define:

Qαβ := G

(
χαβ −

1

3
δαβ Trχ

)
where G is a constant. In this way Q is a good tensorial order parameter.
Let us note that its definition is completely general, and in fact it is useful also to describe other
kinds of phases, not only the uniaxial nematic one.

Using what we have seen in the microscopic approach we can define a tensorial order param-
eter in terms of the director ~n and S:

Qαβ := S

(
nαnβ −

1

3
δαβ

)
The advantage of this definition of the order parameter (which is the one we will use in the
following) is that it also takes into account the degree of orientation and the mean direction.

We now just illustrate some properties of our newly defined order parameter.
By definition Q is symmetric and traceless, so in general way we can write it as:

Q =

q1 q2 q3

q2 q4 q5

q3 q5 −q1 − q4


and from the expression of ~n in polar coordinates we readily have:

q1 = S

(
cos2 θ cos2 φ− 1

3

)
q2 = S cos2 θ sinφ cosφ q3 = S sin θ cos θ cosφ

24We could have also foreseen this from the fact that for nematic phases the direction of ~n is irrelevant (~n and −~n
ar equivalent), so the order parameter can’t be a vector even if it has to indicate a preferred direction.
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q4 = S

(
cos2 θ sin2 φ− 1

3

)
q5 = S cos θ sin θ sinφ

and its diagonalization returns the eigenvalues 2S/3, −S/3 and −S/3, so we can write:

QD =

2
3S 0 0
0 −1

3S 0
0 0 −1

3S

 (6.27)

where “D” stands for “diagnalized”. In the more general case of a biaxial nematic phase, Q can
again be diagonalized (it is still real and symmetric) in the form:

QD =

2
3S 0 0
0 −1

3(S + η) 0
0 0 −1

3(S − η)


and we return to the uniaxial case when η = 0.

Landau-de Gennes theory for nematic liquid crystals

Since we now have a proper order parameter, we can formulate the Landau theory for the
phase transitions of nematic liquid crystals (also called Landau-de Gennes theory). In particular
we want to study the transition between the isotropic and nematic phase, and we call Tn.-i. the
temperature at which it occurs.

As we have already stated, the Landau free energy L must be consistent with the symmetries
of the system, so in this case it must be invariant under rotations.
Now, since Q transforms as a tensor under rotations and L must be a scalar, it will contain
terms of the form TrQp; to the fourth order we will have (the linear term is absent because
TrQ = 0 by definition):

L =
1

2
ATrQ2 +

1

3
B TrQ3 +

1

4
C
[(

TrQ2
)2

+ TrQ4
]

In reality this expression, and in particular the quartic term, can be simplified: in fact it is a
property (which we will not prove) of any n × n symmetric matrix that TrQs with s > n can
be expressed as a polynomial of TrQp with p < n, so in our case any TrQs with s ≥ 4 can be
expressed in terms of TrQ2 and TrQ3 (we are automatically neglecting TrQ since in our case
it vanishes, but in general it must be considered).
Therefore, we can write the Landau free energy as:

L =
1

2
ATrQ2 +

1

3
B TrQ3 +

1

4
C
(
TrQ2

)2
or, in components:

L =
1

2
AQαβQβα +

1

3
BQαβQβγQγα +

1

4
C(QαβQβα)2

Let us note that since our order parameter is a tensor its invariance under rotations does not
exclude the possible existence of terms with odd powers of Q in L, in particular the cubic one.
Now, from (6.27) in the case of a uniaxial nematic liquid crystal we have:

TrQ2 =
2

3
S2 TrQ3 =

2

9
S3

(
TrQ2

)2
=

4

9
S4
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so that, supposing that B and C do not depend on the temperature, while A ∝ T − T 25, we
have:

L =
A

3
(T − T )S2 +

2

27
BS3 +

C

9
S4

This Landau free energy has exactly the same form of the one we studied in 6.5.4, with the
substitutions:

a =
2

3
A − w =

2

27
B b =

4

9
C

Applying the results we have already found, we will have that the first-order transitions be-
tween the isotropic and nematic phases occurs at the temperature:

Tn.-i. = T + 4
w2

ab
= T +

2B2

27AC

while the value of the scalar order parameter S at the transition is:

Sn.-i. = 2
w

b
= − B

3C

From what we have seen in the general case, there will also be a temperature T̃ such that for
Tn.-i. < T < T̃ the Landau free energy L will have a local minimum different from S = 0:
this corresponds to the nematic phase, which in this range of temperatures is metastable. This
minimum occurs for the following value of the order parameter S:

S =
3w

2b
+

√
9w2

4b2
− at

b
= − B

4C
+

√
B2

16C2
+
T − T

9

A

B

(note that for T = Tn.-i. we have S = Sn.-i.).

6.6 Ginzburg-Landau theory

6.6.1 Introduction: Ginzburg criterion

As we have seen, the main assumption (and the most important problem) of mean field theo-
ries is that the fluctuations of the order parameter are completely neglected in the computation
of the partition function; this approximation breaks down in the neighbourhoods of critical
points, where as we have seen in 5.1.2 the correlation length becomes comparable with the size
of the system.
What we would now like to do is to include these fluctuations in a mean field theoretical frame-
work; this will lead to the so called Ginzburg-Landau theory.

As a first approach we can try to estimate how big is the error we make in mean field theories
neglecting the fluctuations of the order parameter near a critical point, so that we can under-
stand under which conditions mean field theories are actually good approximations.
To make things explicit, let us use the Ising model as a base for our considerations.
We have seen in 6.1 that the Weiss mean field theory for the Ising model is based on the as-
sumption that 〈SiSj〉 = 〈Si〉 〈Sj〉, i.e. that the spins are statistically independent; therefore, a
possible estimate of the error made with this assumption can be:

Eij =
| 〈SiSj〉 − 〈Si〉 〈Sj〉 |

〈Si〉 〈Sj〉
(6.28)

25As we have seen before in the general treatment of first-order phase transition within Landau theory, the tem-
perature T has no particular physical relevance.
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The numerator of Eij is, by definition (see also 5.1.2), the two-point connected correlation func-
tion:

Gc(i, j) = 〈SiSj〉 − 〈Si〉 〈Sj〉

If we neglect the fluctuations of the order parameter (which in our case is of course 〈Si〉) we see
that Gc is constantly zero: therefore, in order to have non-null correlation functions we need
that the system exhibits some kind of inhomogeneity, not necessarily due to thermal fluctu-
ations. In fact, the connected correlation function describes not only the spatial extension of
the fluctuations of the order parameter, but also the way it varies in space in response to an
external inhomogeneous field. Let us see this explicitly.
We know that from the partition function of the Ising model in an inhomogeneous external
field ~H , i.e.:

Z = Tr eβ(J
∑
〈ij〉 SiSj+

∑
iHiSi)

we have:
〈Si〉 =

1

βZ

∂Z

∂Hi
=

1

β

∂ lnZ

∂Hi

Similarly:

〈SiSj〉 =
1

β2Z

∂2Z

∂Hi∂Hj

and thus:

Gc(i, j) =
1

β2Z

∂2Z

∂Hi∂Hj
− 1

β2Z2

∂Z

∂Hi

∂Z

∂Hj
=

1

β2

∂2 lnZ

∂Hi∂Hj

Therefore:
∂ 〈Si〉
∂Hj

=
∂

∂Hj

(
1

β

∂ lnZ

∂Hi

)
=

1

β

∂2 lnZ

∂Hi∂Hj
= βGc(i, j)

so Gc(i, j) can indeed be seen as a response function.
If we now call:

M =
∑
i

〈Si〉

we will have:
∂M

∂Hj
=
∑
i

∂ 〈Si〉
∂Hj

= β
∑
i

Gc(i, j)

If our system is invariant under translations and subject to a uniform field, then:

∂M

∂H
=
∑
j

∂M

∂Hj

∂Hj

∂H
= β

∑
i,j

Gc(i, j)

and since χT = ∂M/∂H we get:

χT = β
∑
i,j

Gc(i, j) = β
∑
i,j

(〈SiSj〉 − 〈Si〉 〈Sj〉)

which is a version of the fluctuation-dissipation theorem.

Let us now try to understand when the error (6.28) done in mean field theories is negligible.
Now, in general terms if we formulate a mean field theory for a system we will make the error
(6.28) in the region where correlations are relevant, namely if |~r| is the distance between two
points of the system the error is made for |~r| ≤ ξ, with ξ the correlation length.
Supposing T < Tc, so that the order parameter η is non null, then:

ETOT =

∫
|~r|≤ξ Gc(~r)d

d~r∫
|~r|≤ξ η

2(~r)dd~r
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where we have called d the dimensionality of our system.
Therefore, our mean field theory will be a good approximation if ETOT � 1, i.e.:∫

|~r|≤ξ Gc(~r)d
d~r∫

|~r|≤ξ η
2(~r)dd~r

� 1

known as Ginzburg criterion.
In order to express it in a useful fashion, let us write it in terms of critical exponents; using also
the version we have just found of the fluctuation-dissipation theorem we get (supposing our
system is continuous)26:∫

|~r|≤ξ
Gc(~r)d

d~r ∼ kBTcχT ∼ t−γ
∫
|~r|≤ξ

η2(~r)dd~r ∼ ξd|t|2β ∼ t2β−νd

where we have used the definitions of critical exponents (see 1.5). Therefore, the Ginzburg
criterion can be reformulated as:

ETOT ∼ t−γ+νd−2β � 1

and in the limit t→ 0 this is possible only if −γ + νd− 2β > 0, i.e.:

d >
2β + γ

ν
:= dc

This means that Ginzburg criterion allows us to determine the upper critical dimension dc of a
system, namely the dimension above which mean field theories are good approximations27; if
d < dc fluctuations become too relevant and mean field theories don’t work.
Let us note that since it depends on the critical exponents, the upper critical dimension dc
ultimately depends on the universality class of the system considered; furthermore, in order
to actually be able to compute dc we must generalize Landau theory to systems with spatial
inhomogeneities so that we are able to compute the critical exponent ν.

6.6.2 Functional partition function and coarse graining

A possible way to overcome the limitations of mean field theories (i.e. their inability to discuss
the local properties of the order parameter of a given system, for example its fluctuations) can
be the following: we could regard the profile of the order parameter η(~r) to be the “degree
of freedom” of our system and compute the partition function as a functional integral; in other
words from the microscopic configuration C of our system we can obtain η(~r) with a coarse
graining procedure (we will immediately see what we mean by this) and then determine Z as a
trace over all the possible configurations of our system, i.e. over all the possible forms of η(~r):

Z = Tr e−βH(C) =

∫
D[η(~r)]

′∑
C
e−βH(C) =

∫
D[η(~r)]e−βHeff.[η(~r)]

where with
∑′
C we mean a sum over all the possible microscopic configurations C compatible

with the order parameter profile η(~r), and the last step implicitly defines the effective Hamilto-
nianHeff.:

e−βHeff. :=

′∑
C
e−βH(C)

26For the origin of the first equation, see what we have stated above and also equation (5.2).
27This also mean that above the upper critical dimension the critical exponents determined with mean field the-

ories are exact, or at least in good agreement with experiments.
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We therefore must understand how to determine η(~r); the idea of coarse graining procedures is
the following: for a given microscopic configuration C we average the order parameter η over
sufficiently wide “blocks”, i.e. portions of the system with linear dimension ` much greater
than its microscopic scale, which we call a (in the case of the Ising model, for example, a can
be taken as the lattice constant), but still microscopic and in particular much smaller than the
correlation length ξ, so that the order parameter is uniform in every block. In other words,
coarse graining a system means dividing it into cells of linear dimension `, with ` such that:

a� `� ξ(T ) ≤ L

(L being the linear dimension of our system) and averaging the order parameter η in every cell.
This way we can obtain an expression for η(~r) (since ` is anyway microscopic with respect to
the size of the system, so we can regard ~r as a continuous variable).

6.6.3 Coarse graining procedure for the Ising model

To make things clearer, let us see how the coarse graining procedure works for the Ising model.
If we call mi = 〈Si〉 the local magnetization at the i-th site and d the dimensionality of the
system, every “block” will have volume `d; we define for every block of the system centered in
~r the coarse grained magnetization as:

m`(~r) =
1

N`

∑
i∈~r

mi

where N` = (`/a)d is the number of spins (degrees of freedom in general) which belong to the
block centered in ~r; this definition is reasonable as long as N` is large. Since it has been built as
an average, m` does not fluctuate much on microscopic scales but varies smoothly in space.
Of course, in general we need to specify ` in order to determine m`, but the coarse graining
procedure we are applying will be useful only if the final results are independent of ` (at least
at the spatial scales considered).

We now must express the partition function in terms of m`(~r), and as we have stated before:

Z =

∫
D[m`(~r)]e

−βHeff.[m`(~r)] (6.29)

so we must now computeHeff..
Since we now have a system made up of “blocks” this effective Hamiltonian will be composed
of two parts: a bulk component relative to the single blocks and an interface component relative
to the interaction between the blocks; let us consider them individually.

bulk component: Suppose that every block of volume `d is separate from the rest of the sys-
tem; inside every one of them the magnetization is uniform (since the linear dimension
of the blocks is much smaller than the correlation length), so we can use Landau theory
for uniform systems. In the case of the Ising model, it led to (equation (6.24)):

L =
a

2
tm2 +

b

4
m4

The total bulk energy is thus obtained summing over all the blocks:

βHbulk
eff. =

∑
~r

(
a

2
tm2(~r) +

b

4
m4(~r)

)
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interaction component: We now must take into account the fact that adjacent blocks do inter-
act. In particular since as we have stated m does not vary much on microscopic scales,
the interaction between the blocks must be such that strong variations of magnetization
between neighbouring blocks is energetically unfavourable. If we call ~δ a vector of mag-
nitude ` that points from one block to a neighbouring one, the most simple analytic ex-
pression that we can guess for such a term can be a harmonic one28:

βHint.
eff. =

∑
~r

∑
~δ

k

2

(
m(~r)−m(~r + ~δ)

)2

(the factor 1/2 multiplying k, just like the numeric factors multiplying a and b, have been
inserted for future convenience). We can also think of this as a first approximation of a
general interaction between the blocks, namely as the first terms of a Taylor expansion of
the real interaction energy.

Now, since the linear dimension of the blocks ` is much smaller than the characteristic length
L of the system we can treat ~r as a continuous variable and thus substitute the sum over ~r with
an integral: ∑

~r

−→ 1

`d

∫
dd~r

(while the sum over ~δ remains a sum, since for every ~r there is only a finite number of nearest
neighbours). Therefore:

βHbulk
eff. =

1

`d

∫ (
a

2
tm2(~r) +

b

4
m4(~r)

)
dd~r βHint.

eff. =
1

`d

∫ ∑
~δ

k

2

(
m(~r)−m(~r + ~δ)

)2
dd~r

Keeping in mind that |~δ| = `, the interaction term can be rewritten in terms of ~∇m:

1

`d

∫ ∑
~δ

k

2

(
m(~r)−m(~r + ~δ)

)2
dd~r =

1

`d−2

∫
k

2

∑
~δ

(
m(~r)−m(~r + ~δ)

`

)2

dd~r =

=

∫
k

2`2−d

∑
~δ

(
∂m

∂rδ

)2

dd~r =

∫
k

2`2−d

(
~∇m

)2
dd~r

where we have called rδ the components of ~δ.
Thus, if we now define for the sake of simplicity:

a :=
a

`d
b :=

b

`d
k :=

k

`2−d

we will have:

βHeff. =

∫ [
a

2
tm2(~r) +

b

4
m4(~r) +

k

2

(
~∇m(~r)

)2
]
dd~r

Therefore, the (functional) partition function (6.29) of the system will be:

Z =

∫
e
−
∫ (

a
2
tm2+ b

4
m4+ k

2 (~∇m)
2
)
dd~rD[m`(~r)]

Let us now make a couple of considerations:

28Sometimes this approximation is called elastic free energy.
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– If m(~r) = m = const. the energy of the system has the same structure of the one used in
Landau theory

– The term proportional to (~∇m)2 is completely new but we could have introduced it intu-
itively to a Landau-like mean field functional, since the introduction of spatial variations
in the order parameter has an energetic cost which must depend on how it varies in space,
i.e. it depends on the gradient of m. In particular, it must involve (~∇m)2 because of the
symmetries of the model: since the system is isotropic and Z2-invariant, we must use
combinations of derivatives that are invariant under rotations and parity, and (~∇m)2 is
the simplest of them29.

If there is also an external magnetic field ~h(~r) = β ~H(~r), we must add to the Hamiltonian the
term:

−
∫
~h(~r) · ~m(~r)dd~r

so that the partition function becomes:

Z =

∫
e
−
∫ (

a
2
tm2+ b

4
m4+ k

2 (~∇m)
2−hm

)
dd~rD[m`(~r)] (6.30)

which is a functional of m(~r) and h(~r). As usual, all the thermodynamics of the system can be
obtained from Z, provided that now we take functional derivatives instead of usual derivatives.

Saddle point approximation: Landau theory

We can now compute (6.30), as a first approach, using the saddle point approximation (see
appendix B); as we will see this will reproduce a Landau-like mean field theory which will
also take into account the presence of inhomogeneities. In particular thanks to the new term
involving ~∇m we will be able to compute the fluctuation correlation function30 and so also to
determine the critical exponents η and ν.

Therefore we approximate (6.30) with the leading term of the integral, i.e. we must determine
the function m0 that maximizes the exponent, namely minimizes:

L[m(~r)] := βHeff. −
∫
hmdd~r =

∫ (
a

2
tm2 +

b

4
m4 +

k

2

(
~∇m

)2
− hm

)
dd~r (6.31)

and then compute Z as:
Z ≈ e−L[m0(~r)]

where m0 is determined imposing the stationarity of the functional Lwith respect to m:

δL
δm |m0

= 0

29At this point we could wonder why the interaction part of the Hamiltonian does not contain other terms, like
m∇2m: in fact this is in principle perfectly acceptable since is of second order in m and is invariant under rotations
and parity m→ −m. However, we have that:

m∇2m = ~∇ · (m~∇m)− (~∇m)2

and so when we integrate over ~r, the first term vanishes in the thermodynamic limit supposing that the magneti-
zation or its gradient goes to zero sufficiently rapidly as |~r| → ∞. Therefore, we are left only with (~∇m)2: the two
terms are perfectly equivalent.

30We will do our computations on the Ising model, as usual.
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This leads to the state equation of the system:

h(~r) =
δH̃
δm

where we have defined H̃ := βHeff. for brevity.
If we now call h the integrand of H̃, since31:

δH̃
δm

=
∂h

∂m
− ~∇ ∂h

∂(~∇m)

we have:
h(~r) = −k∇2m(~r) + atm(~r) + bm3(~r) (6.32)

Note that if h = const. and m0 = const. (i.e. the system is uniform) we get the state equation
that we have obtained with the Landau theory (see 6.5.3):

h = atm0 + bm3
0

Correlation function in the saddle point approximation We can now proceed to compute
the correlation function within our approximations.
In order to do that, we take the (functional) derivative of (6.32) with respect to h(~r ′), so that
χT = δm/δh appears:

δ(~r − ~r ′) =
[
−k∇2 + at+ 3bm2

]
χT (~r − ~r ′)

Now, from fluctuation-dissipation theorem we know that:

G(~r − ~r ′) = kBTχT (~r − ~r ′)

so that:
β
[
−k∇2 + at+ 3bm2

]
G(~r − ~r ′) = δ(~r − ~r ′) (6.33)

Note that this means that the correlation function G(~r − ~r ′) can be interpreted as the Green’s
function of the operator written between the square brackets.

In case of translationally invariant (i.e. uniform) systems, m is constant and equal to the equi-
librium values given by Landau theory (see 6.5.3); in particular, depending on the sign of t
there are two possible situations:

31This follows from the integral form of H̃. In fact, if in general a functional is of the form:

F [η] =

∫
f(η, ~∇η)dd~r

then from the definition of functional derivative we have:∫
δF

δη
ϕ(~r)dd~r =

d

dε

[∫
f
(
η + εϕ, ~∇(η + εϕ)

)
dd~r

]
|ε=0

=

∫ (
∂f

∂η
ϕ+

∂f

∂~∇η
· ~∇ϕ

)
dd~r

where ϕ(~r) is an arbitrary function that vanishes on the boundary of integration. Integrating by parts we get:∫
δF

δη
ϕ(~r)dd~r =

∫ (
∂f

∂η
− ~∇ · ∂f

∂~∇η

)
ϕ(~r)dd~r

and so finally:
δF

δη
=
∂f

∂η
− ~∇ · ∂f

∂~∇η
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t > 0: In this case m(~r) = m0 = 0, so (6.33) becomes:(
−k∇2 + at

)
G(~r − ~r ′) = kBTδ(~r − ~r ′)

Defining:

ξ> :=

√
k

at

this can be rewritten as: (
−∇2 + ξ−2

>

)
G(~r − ~r ′) =

kBT

k
δ(~r − ~r ′)

t < 0: In this case the magnetization is:

m0 = ±
√
−at
b

so (6.33) becomes: (
−k∇2 − 2at

)
G(~r − ~r ′) = kBTδ(~r − ~r ′)

This can be rewritten in a form similar to the previous case; in fact, if we define:

ξ< =

√
− k

2at

we get: (
−∇2 + ξ−2

<

)
G(~r − ~r ′) =

kBT

k
δ(~r − ~r ′)

We will shortly see that ξ> and ξ< are the expressions of the correlation length for T > Tc and
T < Tc, respectively. We can therefore see that in both cases we get:

ν =
1

2

Thus, for both the cases t > 0 and t < 0 the correlation function G(~r − ~r ′) can be obtained by
solving the differential equation:

(
−∇2 + ξ−2

)
G(~r − ~r ′) =

kBT

k
δ(~r − ~r ′) (6.34)

which can be done with Fourier transforms.
If we use the following conventions for the Fourier transform:

f̂(~q) =

∫
f(~r − ~r ′)e−i~q·(~r−~r ′)dd(~r − ~r ′) f(~r − ~r ′) =

1

(2π)d

∫
f̂(~q)ei~q·(~r−~r

′)dd~q

then transforming both sides of (6.34) we get:

(q2 + ξ−2)Ĝ(~q) =
kBT

k
⇒ Ĝ(~q) =

kBT

k

1

q2 + ξ−2

where q = |~q|32. From this last equation we can also foresee that when T = Tc, since ξ = ∞
we have Ĝ(~q) ∼ q−2 and so G(~r) ∼ 1/|~r|2−d, from which we have that the critical exponent η is

32In the following, for the sake of simplicity we will indicate the magnitude of a vector simply removing the
arrow sign.
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null (we will see that explicitly once we have computed G).
Therefore, renaming ~x = ~r − ~r ′ we can now determine G(~x) with the Fourier antitransform:

G(~x) =

∫
dd~q

(2π)d
ei~q·~x

q2 + ξ−2
(6.35)

This integral is a bit tedious to compute, and in general its result depends strongly on the
dimensionality d of the system; the general approach used to solve it is to shift to spherical
coordinates in Rd and then complex integration for the remaining part, which involves |~q|.
In order to do some explicit computations, let us consider the case d = 3; we will then have:

G(~x) =

∫
d3~q

(2π)3

ei~q·~x

q2 + ξ−2
=

1

(2π)3

∫ ∞
0

q2

q2 + ξ−2
dq

∫ 1

−1
eiqx cos θd(cos θ)

∫ 2π

0
dϕ

Therefore:

G(~x) =
1

(2π)2

∫ ∞
0

q2

q2 + ξ−2
dq

(
eiqx

iqx

)1

−1

=
1

(2π)2x

∫ ∞
0

q sin(qx)

q2 + ξ−2
dq

This last integral can be computed, using the residue theorem, extending it to the complex
plane:∫ ∞

0

q sin(qx)

q2 + ξ−2
dq =

1

2

∫ +∞

−∞

q sin(qx)

q2 + ξ−2
dq =

1

2
Im

∫
zeizx

z2 + ξ−2
dz =

1

2
Im

∫
zeizx

(z + iξ−1)(z − iξ−1)
dz

Now, the integrand exhibits two poles at ±iξ−1; we choose as the contour of integration Γ the
upper semicircle in the complex plane, which contains only the pole at iξ−1 and so using the
residue theorem we will have:

1

2
Im

∫
Γ

zeizx

(z + iξ−1)(z − iξ−1)
dz =

1

2
Im

[
2πi

iξ−1e−x/ξ

2iξ−1

]
=

1

2
Im

[
2πi

e−x/ξ

2

]
=
π

2
e−x/ξ

Therefore, in the end we have:

G(~x) =
1

8π

e−|~x|/ξ

|~x|
We see now clearly that the correlation function has indeed an exponential behaviour (as we
have stated also in 5.1.2) and that ξ is really the correlation length; furthermore, G(~x) ∼ 1/|~x|
and from the definition of the exponent η we have G(~x) ∼ 1/|~x|d−2+η, so since d = 3 we indeed
have η = 0.

Therefore, we have seen that for the Ising model ν = 1/2. If we also consider the values of the
other critical exponents we see that the upper critical dimension for this model is dc = 4. In
other words, mean field theories are actually good approximations for the Ising model if d ≥ 4.
We will later see some other confirmations of this fact, particularly in 6.6.3.

Gaussian approximation

Until now even if we have introduced Ginzburg-Landau theory we are still neglecting the
effects of the fluctuations since we are regarding the mean field theory approximation for non-
homogeneous systems as a saddle point approximation of a more general theory; in other
words, since we are approximating Z as e−L[m0(~r)] we are still regarding the magnetization
m as non fluctuating over the system. In order to include the fluctuations we must do more
and go further the simple saddle point approximation.
The simplest way we can include fluctuations in our description is expanding (6.30) around
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the stationary solution and keeping only quadratic terms; this means that we are considering
fluctuations that follow a normal distribution around the stationary value. The important thing
to note, however, is that in this approximation these fluctuations are independent, i.e. they do
not interact with each other33.
As we will see, with this assumption the values of some critical exponents will differ from the
“usual” ones predicted by mean field theories.

Let us apply this approximation from easier cases to more complex ones (and finally to the one
we are interested in).

Gaussian approximation for one degree of freedom Let us consider a system with a single
degree of freedom q, and call H(q) its Hamiltonian. Supposing that q0 is a minimum for H, i.e.
∂H/∂q|q0 = 0, expandingH around q0 we get:

H(q) = H(q0) +
1

2

∂2H
∂q2

|q0
δq2 +O(δq3)

where δq = q − q0 is the fluctuation of q around its stationary value q0. The Boltzmann factor
needed to compute the partition function will therefore be:

e−βH(q) ∼ e−βH(q0)− 1
2
δq2

λ2

where for the sake of simplicity we have defined:

1

λ2
:= β

∂2H
∂q2

|q0

With this approximation, the partition function of the system results:

Z =

∫ +∞

−∞
e−βH(q) ∼ e−βH(q0)

∫ +∞

−∞
e−

δq2

2λ2 dq

The last one is a gaussian integral, which readily gives:

∫ +∞

−∞
e−

(q−q0)2

2λ2 dq =
√

2πλ2

Therefore:

Z = e−βH(q0)
√

2πλ2

and since Z = e−βF the free energy of the system is:

F = H(q0)− kBT

2
ln
(
2πλ2

)
We thus see that the introduction of the fluctuations in the degree of freedom q has led to the
appearance of an entropic term in the free energy.

33In solid state physics this assumption is often called random phase approximation, while in field theory free field
approximation.
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Gaussian approximation forN degrees of freedom This is a simple generalization of the pre-
vious case; the Hamiltonian will now be a function of theN -component vector ~q = (q1, . . . , qN ),
and calling ~q0 the minimum ofH, expanding around ~q0 we get:

H(~q) = H(~q0) +
∑
α,β

1

2
(qα − q0α)

∂2H
∂qα∂qβ |~q0

(
qβ − q0β

)
+ · · ·

Now, the Hessian matrix:

Hαβ =
∂2H
∂qα∂qβ |~q0

is of course symmetric (thanks to Schwarz’s theorem), so it can be diagonalized. Calling λ̂i its
eigenvalues and defining βλ̂i := 1/λ2

i , we can write:

βH(~q) = βH(~q0) +
1

2

N∑
i=1

q̃2
i

λ2
i

where q̃i is the fluctuation from the eigenvector of the Hessian relative to the eigenvalue λ̂i.
We therefore have:

Z =

∫ +∞

−∞
e−βH(~q)d~q = e−βH(~q0)

N∏
i=1

∫ +∞

−∞
e
− q̃2i

2λ2
i dqi

The last integrals are all independent and of the same form as the previous case. Thus, in the
end we have:

F = H(~q0)− kBT

2

N∑
i=1

ln
(
2πλ2

i

)

Gaussian approximation for infinite degrees of freedom Let us now move to the really in-
teresting case, i.e. the case of infinite degrees of freedom.
In general terms (we shall shortly see this explicitly for the Ising model) we want to compute a
partition function of the form:

Z =

∫
e−βH(m(~r))D[m(~r)]

and the Gaussian approximation will be obtained, in analogy with the previous cases, deter-
mining the extremal (uniform) solution m(~r) = m0 and then expanding H around m0 to the
second order in the fluctuation δm(~r) = m(~r)−m0.
Thus, we will in general obtain a Hamiltonian of the form:

H(m(~r)) = H(m0) +
1

2

∫
δm(~r)G−1

0 (~r, ~r ′)δm(~r ′)dd~rdd~r ′

where:

G−1
0 (~r, ~r ′) :=

δ2H
δm(~r)δm(~r ′)

∣∣∣m(~r)=m0

h=0

Therefore:

F = H(m0) +
kBT

2

∫
ln

(
G−1

0 (~r, ~r ′)

2π

)
dd~r
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Gaussian approximation for the Ising model in Ginzburg-Landau theory Let us now apply
what we have just only stated to a concrete case, i.e. the Ginzburg-Landau theory for the Ising
model we were considering.
In this case:

βH(m(~r)) =

∫ [
k

2

(
~∇m

)2
+
a

2
tm2 +

b

4
m4 − hm

]
dd~r (6.36)

and we have seen that the stationary solution m0 is such that:

h = atm0 + bm3
0

Let us now include also the fluctuations of m, substituting m = m0 + δm. To the second order
in δm we have: (

~∇m
)2

=
[
~∇(m0 + δm)

]2
=
(
~∇δm

)2

m2 = (m0 + δm)2 = m2
0 + 2m0δm+ (δm)2

m4 = (m0 + δm)4 = m4
0 + 4m3

0δm+ 6m0(δm)2 + 4m0(δm)3 + (δm)4 =

= m4
0 + 4m3

0δm+ 6m0(δm)2 +O(δm3)

and so setting h = 0:

βH(m(~r)) =

∫ [
a

2
tm2

0 +
b

4
m4

0 + (atm0 + bm3
0)δm+

(
a

2
t+

3

2
bm3

0

)
δm2 +

k

2

(
~∇δm

)2
]
dd~r

Since atm0 + bm3
0 = h = 0, defining for simplicity A0 := atm2

0/2 + bm4
0/4 and calling V the

volume of the system we get:

βH(m(~r)) = A0V +

∫ [(
a

2
t+

3

2
bm3

0

)
δm2 +

k

2

(
~∇δm

)2
]
dd~r (6.37)

In order to compute this integral it is more convenient to shift to Fourier space.

Let us make some remarks on what happens when we apply Fourier transformations in this
case.
If our system is enclosed in a cubic box of volume V = Ld, we can define the Fourier compo-
nents of the magnetization as:

m~k
=

∫
V
e−i

~k·~rm(~r)dd~r (6.38)

where ~k = 2π~n/L and ~n is a vector whose components are integer numbers. We can therefore
expand the magnetization in a Fourier series:

m(~r) =
1

V

∑
~k

ei
~k·~rm~k

Substituting this expression of m in m~k
we obtain an integral representation for the Kronecker

delta; in fact:

m~k
=
∑
~k ′

m~k ′

(
1

V

∫
V
ei(
~k−~k ′)·~rdd~r

)
and this is true only if:

1

V

∫
V
ei(
~k−~k ′)·~rdd~r = δ~k,~k ′ ⇒

∫
V
ei(
~k−~k ′)·~rdd~r = V δ~k,~k ′
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Let us now make two observations. First: since m(~r) is real we have that m∗~k = m−~k. Second:
our coarse graining procedure is based on the construction of blocks which have a linear di-
mension that cannot be smaller than a, the characteristic microscopic length of the system; this
means that not all the ~k are allowed, and in particular we must have |~k| ≤ π/a := Λ.
Now, thinking about the functional integral form of the partition function, what does the trace∫
D[m(~r)] become in Fourier space?

Since m(~r) is expressed in terms of the Fourier modes m~k
, which are in general complex, the

measure of the integral becomes:∫ +∞

−∞

∏
|~k|<Λ

d
(
Rem~k

)
d
(
Imm~k

)
However, since m(~r) is real (i.e. m∗~k = m−~k) the real and imaginary parts of the Fourier modes
are not independent, because we have:

Rem~k
= Rem−~k Imm~k

= − Imm−~k

This means that if we use the trace we have written above we would integrate twice on the
complex plane; we must therefore change the measure so as to avoid this double counting. We
can for example simply divide everything by 2, or restrict the integration on the region where
for example the last coordinate of ~k, let us call it kz , is positive.
Therefore:

Tr =

∫
D[m(~r)] =

1

2

∫ +∞

−∞

∏
|~k|<Λ

d
(
Rem~k

)
d
(
Imm~k

)
=

=

∫ +∞

−∞

∏
|~k|<Λ,kz>0

d
(
Rem~k

)
d
(
Imm~k

)
:=

∫ +∞

−∞

′∏
~k

dm~k

where the last step defines the symbolic notation
∏′
~k

. In the end, we have:

Z =

∫ +∞

−∞

′∏
~k

e−βH(m~k)dm~k

Let us now compute the partition function of the system in the simpler case T > Tc
34, so that

in the end we can determine the free energy of the system.
In this case m0 = 0 so δm = m, and therefore substituting (6.38) in (6.37) we get (renaming ~q
the coordinate in Fourier space, so as not to confuse it with the constant k):

βH−A0V =

∫
dd~r

 k

2V 2

∑
~q,~q ′

~q · ~q ′ei(~q−~q ′)·~rm~qm
∗
~q ′ +

at

2V 2

∑
~q,~q ′

ei(~q−~q
′)·~rm~qm

∗
~q ′

 =

=
1

2V 2

∑
~q,~q ′

m~qm
∗
~q ′
(
k~q · ~q ′ + at

) ∫
ei(~q−~q

′)·~rdd~r︸ ︷︷ ︸
V δ~q,~q ′

=
1

2V

∑
~q

m~qm−~q
(
k|~q|2 + at

)
=

=
1

2V

∑
~q

(
k|~q|2 + at

)
|m~q|2

34We could have equivalently considered the case T < Tc, but it is a bit more complicated since m0 6= 0 and so
there is another term that contributes to the free energy. In other words, if T < Tc then in m (as defined in (6.38))
we are not considering the term with ~k = 0 (which is exactly equal to m).
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Therefore substituting in the expression of the partition function the exponentials factorize, and
in the end:

Z =
′∏
~q

∫ +∞

−∞
e−

β
2V

(kq2+at)|m~q |2+βA0V dm~q

Since |m~q|2 = Re2m~q + Im2m~q, changing variables to:

x = Rem~q y = Imm~q

the integration in dm~q = d
(
Rem~q

)
d
(
Imm~q

)
gives:∫ +∞

−∞
dxdye−

kq2+at
2V

(x2+y2) = π
2V

kq2 + at

Thus:

Z =
′∏
~q

2πV

kq2 + at
e−βA0V

We therefore have that the free energy of the system is:

F = −kBT lnZ = A0V −
kBT

2

∑
|~q|<Λ

ln

(
2πV

kq2 + at

)

We can now compute the specific heat of the system, and so determine its critical exponent α.
We therefore want to compute:

CV = −T ∂2

∂T 2

F

V

The derivatives are straightforward, and in the end we get:

CV
T

=
kBTa

V T 2
c

∑
|~q|<Λ

1

(kq2 + at)2
− kBa

2

2V Tc

∑
|~q|<Λ

1

kq2 + at
(6.39)

Let us now consider the two terms separately and study their behaviour for t→ 0+ (we are in
fact considering T > Tc).
Neglecting the proportionality constants that we don’t need, we can rewrite the first contribu-
tion as:

I1 =
1

V

∑
|~q|<Λ

1

(kq2 + at)2
=

∫
|~q|<Λ

dd~q

(2π)d
1

(kq2 + at)2

where we have substituted the sum with an integral35, since the density of states in Fourier
space is high (it is proportional to V , see the footnote). Now, using the definition of ξ := ξ> =

35The substitution: ∑
|~q|<Λ

−→ V

(2π)d

∫ Λ

0

dd~q

can be justified as follows: ∑
|~q|<Λ

=
∑
|~q|<Λ

∆~q

∆~q
= (∆~q)−1

∑
|~q|<Λ

∆~q

Now, ~q is quantized since V is finite and we have periodic boundary conditions, and in particular ∆~q = ∆q1 ·
∆q2 · · ·∆qd = (2π/L)d = (2π)d/V . Therefore:∑

|~q|<Λ

=
V

(2π)d

∫
|~q|<Λ

d~q
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√
k/at that we have previously seen we have:

I1 =
1

k2

∫
|~q|<Λ

dd~q

(2π)d
1

(q2 + ξ−2)2
(6.40)

In order to understand the divergent behaviour of the integral for t → 0+, we use a “scaling
trick”; we change variable defining:

~x = ξ~q

so that the integral becomes:

I1 =
1

k2

∫
|~x|<ξΛ

dd~x

(2π)d
ξ−d

(
x2

ξ2
+

1

ξ2

)−2

=
ξ4−d

k2

∫
|~x|<ξΛ

dd~x

(2π)d
1

(1 + x2)2

and for t→ 0+ we know that ξ →∞, so the integral is computed for all values of x = |~x|.
Now, this integral must be computed shifting to spherical coordinates, so we will have dd~x ∝
xd−1dx (a part from numerical factors that involve all the angles, which are integrated trivially
since the integrand only depends on x). Therefore the integrand of I1 is xd−1/(1 + x2)2, and its
behaviour for large or small x is:

xd−1

(1 + x2)2
∼

{
0 x→ 0

xd−5 x→∞

where of course in the first case we have d > 1; for large x, since in general:∫ ∞
x

dx

xa
<∞ if a > 1

then the integral will converge if 5− d > 1, i.e. d < 4.
To sum up, the integral that appears in I1 converges for 1 < d < 4 (since in this case the inte-
grand does not diverge in the domain of integration); of course, when this integral converges
its result is simply a number. We therefore have that:

I1 ∝ ξ4−d d < 4

and since ξ →∞ for t→ 0+, we see that I1 brings toCV a diverging contribution36 for T → T+
c .

We can also wonder what happens for d > 4. From what we have stated about the rescaled
form of I1 (namely equation (6.40)) we could think that the integral diverges, but we must
also take into account the prefactor ξ4−d, which tends to zero for d > 4 as the transition is
approached (since ξ → ∞). The net result is finite, as could also be argued from the original
(unscaled) form of I1; in fact if ξ → ∞ in (6.40) then (in spherical coordinates) the integrand is
proportional to qd−1−4 = qd−5, and since:∫ x

0

dx

xa
<∞ for a < 1

then I1 converges if 5− d < 1, i.e. d > 4.
To sum up, we can say that the first contribution to the specific heat behaves as:

kBTa

V T 2
c

∑
|~q|<Λ

1

(kq2 + at)2
∼

{
t−ν(4−d) d < 4

finite d > 4

36A little remark: the origin of this divergence does not come from the behaviour of the integral for large wave-
lengths. In fact, in the original definition of I1 the integral has an upper limit, Λ, so it cannot diverge because of
the large q behaviour; if it diverges, it must be because of the behaviour for q → 0, which corresponds to large
wavelengths (this is also why this divergence is sometimes called infrared divergence).
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where we have also used the definition of the exponent ν, i.e. ξ ∼ t−ν .
Note that this also means that in the Gaussian approximation this term brings no corrections
to the exponent α above four dimensions.

Let us now consider the second contribution to CV /T in (6.39).
In particular, as we have done before we rewrite it substituting the sum with an integral and
also using the definition of ξ, so that:

I2 =
1

k

∫
|~q|<Λ

dd~q

(2π)d
1

q2 + ξ−2

Again, we are interested in its behaviour for ξ → ∞, and as we have already noted it is only
the behaviour of the integrand for q → 0 that can cause any divergence.
As previously done, changing variable to ~x = ξ~q:

I2 =
ξ2−d

k

∫
|~x|<ξΛ

dd~x

(2π)d
1

x2 + 1

and using spherical coordinates:

I2 ∝ ξ2−d
∫ ξΛ

0

xd−1

x2 + 1
dx

The integrand behaves as:

xd−1

x2 + 1
∼

{
0 x→ 0

xd−3 x→∞

where again in the first case d > 1. Therefore, the integral in I2 (not I2 itself) in the limit ξ →∞
converges if 3− d > 1, i.e. d < 2; this means that for d < 2 and t→ 0+ we have that I2 behaves
as:

I2 ∼ ξ2−d ∼ t−ν(2−d)

For the case d > 2 it is more convenient to consider the unscaled form of I2. In this case, in the
limit ξ →∞we have (again in spherical coordinates):

I2 ∝
∫ Λ

0

qd−1

q2
dq

and the integrand converges for q → 0 if d > 2.
Therefore for d < 2 the second contribution to (6.39) diverges, but in the same range of d the
divergence of the first contribution is more relevant; on the other hand, for 2 ≤ d < 4 only the
first contribution diverges.
It is therefore the term containing I1 that determines the divergence of the specific heat, and in
particular for d < 4 we have CV ∼ t−ν(4−d) and so we see that in the Gaussian approximation
the inclusion of the fluctuations has changed the value of the critical exponent α to37:

α = ν(4− d)

In order to compute it, however, we still must determine ν so we now proceed to compute the
two-point correlation function in order to determine both η and ν.

37We stress again that the same calculations could have been done in the case T < Tc, but we have not done so
only for the sake of simplicity.
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Two-point correlation function in the Gaussian approximation We know that the (simple)
correlation function is defined as:

G(~r, ~r ′) =
〈
m(~r)m(~r ′)

〉
so we first have to determine:

m(~r)m(~r ′) =
1

V 2

∑
~q,~q ′

ei~q·(~r+~r
′)m~qm~q ′

Shifting to Fourier space, we have:

〈
m~qm~q ′

〉
=

∫
dm~q1dm~q2 · · · dm~qdm~q ′e

−βHm~qm~q ′∫
dm~q1dm~q2 · · · dm~qdm~q ′e−βH

where:
βH = A0V +

1

2V

∑
~k,~k ′

(
k|~q|2 + at

)
|m~q|2

It is clear that in
〈
m~qm~q ′

〉
all the integrals factorize since the Fourier modes are all independent

(they are decoupled); therefore, all the integrals in the numerator that don’t involve ~q or ~q ′

simplify with the same integrals in the denominator, so that in the end we are left with:

〈
m~qm~q ′

〉
=

∫
e−

k|~q|2+at
2V

|m~q |2e−
k|~q ′|2+at

V
|m~q ′ |2m~qm~q ′dm~qdm~q ′∫

e−
k|~q|2+at

V
|m~q |2e−

k|~q ′|2+at
V

|m~q ′ |2dm~qdm~q ′

(where the factor 2 in the denominator of the exponent has disappeared because we must re-
member that m~q = m∗−~q). There are now two possible cases:

~q 6= ±~q ′: in this case (which can be re-expressed as |~q| 6= |~q ′|) the two coefficients m~q and m~q ′

are distinct, and in the numerator the double integral factorizes into two integrals of the
form: ∫

e−
k|~q|2+at

V
|m~q |2m~qdm~q = 0

since the integrand is odd. We therefore have:

G~q,~q ′ =
〈
m~qm~q ′

〉
= 0 |~q| 6= |~q ′|

~q = ±~q ′: in this case (equivalent to |~q| = |~q ′|) we can either have ~q = ~q ′ so that
〈
m~qm~q ′

〉
=

〈m2
~q〉, or ~q = −~q ′ so that

〈
m~qm~q ′

〉
= 〈m~qm

∗
~q〉 = 〈|m2

~q |〉.
Let us first consider the case ~q = ~q ′. Using polar coordinates, we define m~q = |m~q|eiθ~q so
that the measure dm~q in the complex plane becomes:

dm~q = |m~q|d|m~q|dθ~q

Thus: 〈
m2
~q

〉
=

∫
e−βHm2

~qdm~q∫
e−βHdm~q

∝
∫ 2π

0
e2iθ~qdθ~q = 0

We are therefore left with the last case ~q = −~q ′: now, shifting to polar coordinates the
integrals in both the numerator and denominator involving θ~q factorize and simplify, so
in the end renaming x = |m~q| in the integrals for simplicity:

〈
|m~q|2

〉
=

∫∞
0 e−

k|~q|2+at
V

x2
x2 · xdx∫∞

0 e−
k|~q|2+at

V
x2
xdx
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Noting that xdx = dx2/2, if we change variable to y = x2 and integrate we get38:

〈
|m~q|2

〉
=

∫∞
0 e−

k|~q|2+at
V

yydy∫∞
0 e−

k|~q|2+at
V dy

=
V

k|~q|2 + at

Therefore since the correlation function in Fourier space is non null only when ~q = −~q ′, in
general we can write:

G~q,~q ′ =
〈
m~qm~q ′

〉
=

V

k|~q|2 + at
δ~q,−~q ′

Going back to real space we have:

G(~r, ~r ′) = 〈m~rm~r ′〉 =
1

V 2

∑
~q,~q ′

ei(~q·~r+~q
′·~r ′) 〈m~qm~q ′

〉
=

=
1

V 2

∑
~q,~q ′

ei(~q·~r+~q
′·~r ′) V δ~q,~q ′

k|~q|2 + at
=

1

V

∑
~q

ei~q·(~r−~r
′)

k|~q|2 + at

We see that appropriately substituting the sum with an integral (see the footnote on page 184)
and defining:

ξ =

√
k

at

this correlation function acquires the same form of the one computed in mean field theory,
i.e. equation (6.35). This means that the critical exponents ν and η now have the same values
predicted by mean field theory, namely:

ν =
1

2
η = 0

Interaction between fluctuations: expansion to the fourth order

We have therefore seen that mean field theories can be improved including the fluctuations of
the order parameter around its extremal values; in particular with the Gaussian approximation
we have stopped the expansion at the second order and this led to a change in the critical expo-
nent of the specific heat, which now really diverges instead of exhibiting a jump discontinuity
as simple mean field theories predict. However, the quartic term δm4 that we ignore within the
Gaussian approximation (and which basically represent the interactions between the fluctua-
tions) becomes crucial when we approach a critical point.
We could thus wonder if the Gaussian approximation can be improved. In particular, recon-
sidering equation (6.36) with h = 0:

βH(m(~r)) =

∫ [
k

2

(
~∇m

)2
+
a

2
tm2 +

b

4
m4

]
dd~r

then keeping all the terms in δm when expanding m around m0, remembering that atm0 +
bm3

0 = 0 and considering that the odd terms in δm give no contribution (since we integrate an
odd function over an even domain), we have:

βH = A0V +

∫ [(
a

2
t+

3

2
bm3

0

)
δm2 +

k

2

(
~∇δm

)2
]
dd~r +

b

4

∫
δm4dd~r

38In order to compute the integral in the numerator we have used a standard “trick”:∫ ∞
0

e−kxxdx = − ∂

∂k

∫ ∞
0

e−kxdx = − ∂

∂k

(
e−kx

−k

)+∞

0

= − ∂

∂k

1

k
=

1

k2
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A natural approach to compute the partition function Z would now consist in using a perturba-
tive method in order to expand the term exp

(
− b

4

∫
δm4dd~r

)
in powers of the parameter b. This

is of course a reasonable approach if b is small; however, with a simple dimensional analysis
we can show (and this is what we are going to do in the following) that for t→ 0 and d < 4 this
parameter diverges. The approach of the Gaussian approximation is therefore inconsistent, at
least from this point of view.

Dimensional analysis of Landau theory We know that the partition function of the system is:

Z =

∫
e−βH(m(~r))D[m(~r)]

where, in the case h = 0:

βH(m(~r)) =

∫ [
k

2

(
~∇m

)2
+
a

2
tm2 +

b

4
m4

]
dd~r

It is now convenient to rescale the order parameter m so that the term proportional to ~∇m has
only a numerical coefficient. This can be done defining:

ϕ = m
√
k r0 =

at

k
u0 =

b

4k2
(6.41)

so that:

Heff. := βH =

∫ [
1

2

(
~∇ϕ
)2

+
r0

2
ϕ2 + u0ϕ

4

]
dd~r

where we have defined the dimensionless39 effective HamiltonianHeff..
Now, since Heff. is dimensionless all the three integrals that appear in Heff. must be so; this
means that ϕ, r0 and u0 must have precise dimensions.
In fact, from the first contribution we have that:[∫ (

~∇ϕ
)2
dd~r

]
= 1 ⇒ Ld

[ϕ]2

L2
= 1 ⇒ [ϕ] = L1−d/2

and similarly: [∫
r0ϕ

2dd~r

]
=

[∫
u0ϕ

4dd~r

]
= 1

from which we have that:
[r0] = L−2 [u0] = Ld−4

We can therefore use r0 to define a length scale independent of the dimension of the system,
i.e. r0

−1/2. Since r0 ∝ t by definition and since ξ ∼ t−1/2 within mean field theories and
Gaussian approximation, we see that this choice is equivalent to measuring lengths in units of
the correlation length ξ (which we know is independent of the dimension of the system).
We now rescale the variables, including those defined in (6.41), by setting:

φ =
ϕ

`1−d/2
~x =

~r

`
u =

u0

`d−4

where ` = r0
−1/2.

This way, the partition function can be written in the form:

Z =

∫
e−H0(φ)−U(φ)D[φ]

39Remember that β has the dimension of the inverse of an energy.
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where:

H0 =

∫ [
1

2

(
~∇φ
)2

+
1

2
φ2

]
dd~x U =

∫
uφ4dd~x

and U , depending on the quartic term in φ, is the contribution due to the interaction between
the fluctuations. It is the presence of this terms that prevents us from computing Z exactly and
that forces us to resort to approximations.

The most standard procedure to apply in this case would be a perturbative method, namely to
consider the dimensionless parameter u as small, i.e. u � 1, and expanding the exponential
term containing U :

Z =

∫
e−H0

(
1− U +

1

2
U2 + · · ·

)
D[φ]

Written out explicitly, we have:

u =
u0

r
(d−4)/2
0

= u0

(
at

k

)(d−4)/2

We thus immediately see that if d < 4 then u diverges when t → 0, making the perturbative
approach infeasible. On the other hand, if d > 4 we indeed have u → 0 when t → 0, so the
Gaussian approximation is actually a good one.
Now, we can say that the perturbative expansion is reasonable if u ≤ 1, which gives:

t(d−4)/2 ≥ u0

(a
k

)(d−4)/2

This, using also (6.41), can be rewritten as:

t(4−d)/2 ≥ b

4a2ξd1
where ξ1 := ξ(t = 1) =

√
a

k

which is therefore a criterion that tells us if the perturbative approach is valid.
Note that from this analysis we have determined the upper critical dimension of the system
(d = 4), so we can say that this last criterion is equivalent to the Ginzburg criterion.

A final remark.
The argument we have shown is not really convincing. In fact, we have only shown that every
term of the perturbation theory diverges as t→ 0; however, this does not necessarily mean that
the whole perturbation series is divergent. For example, consider the exponential series:

e−x =
∞∑
n=0

(−x)n

n!

This is convergent for x→∞ (limx→∞ e
−x = 0), but each term of the sum diverges in the same

limit.
We thus understand that we must be careful when handling perturbation expansions, since the
appropriate resummation of divergent terms can bring to a convergent series.



Chapter 7

Scaling theory

We have seen in 5.1.2 that as a given system approaches a critical point, the distance ξ over
which the fluctuations of the order parameter are correlated becomes comparable to the size
of the whole system and the microscopic aspects of the system become irrelevant (which is the
phenomenon of universality we have encountered in 1.5). This means that near a critical point
the system has no longer characteristic lengths, besides ξ of course.
We can therefore expect that if we “move” a little bit from a critical point, for example changing
the temperature by a small amount, the free energy of the system as a function will not change
its shape, but will be rescaled.

This is the main idea of scaling theory; in order to understand it the concept of homogeneous
function is essential, and in appendix E we recall the most important facts about them.

7.1 Widom’s static scaling theory

We have seen in the first part of chapter 5 that when a phase transition occurs the free energy
of the system is such that the response functions exhibit singularities, often in the form of
divergences.
To make a concrete example (but of course all our statements are completely general) if we
consider a magnetic system we can suppose to write its free energy density as:

f(T,H) = fr(T,H) + fs(t, h)

where t = (T − Tc)/Tc, h = (H − Hc)/kBT , fr is the “regular” part of the free energy (which
does not significantly change near a critical point), while fs is the “singular” one, which con-
tains the non-analytic behaviour of the system near a critical point (i.e. t ≈ 0 and h ≈ 0).

Widom’s static scaling hypothesis consists in assuming that the singular part fs of the free energy
is a generalized homogeneous function, i.e.:

fs(λ
p1t, λp2h) = λfs(t, h) ∀λ ∈ R (7.1)

in appendix E we discuss the main properties of such functions.
Note that assuming that one thermodynamic potential is a generalized homogeneous function
implies that all the other thermodynamic potentials are so.

The exponents p1 and p2 are not specified by the scaling hypothesis; however, we are shortly
going to show that all the critical exponents of a system can be expressed in terms of p1 and
p2; this also implies that if two critical exponents are known, we can write p1 and p2 in terms
of them (since in general we will have a set of two independent equations in the two variables

191



192 CHAPTER 7. SCALING THEORY

p1 and p2) and therefore determine all the critical exponents of the system. In other words, we
just need to know two critical exponents to obtain all the others.

As shown in appendix E, an important property of generalized homogeneous functions is that
with a proper choice of λ we can remove the dependence on one of their arguments; for exam-
ple, if in our case we choose λ = h−1/p2 then:

fs(t, h) = h1/p2fs

(
t

hp1/p2
, 1

)
(7.2)

The ratio ∆ := p2/p1 is sometimes called gap exponent.

7.1.1 Relations between critical exponents

Let us now explore the consequences of (7.1) on the critical exponents of a system, again on a
magnetic one for concreteness.

Exponent β Since M = ∂f/∂H , deriving both sides of (7.1) with respect to h1 we get:

λp2
∂

∂h
fs(λ

p1t, λp2h) = λ
∂

∂h
fs(t, h)

and thus:
λp2M(λp1t, λp2h) = λM(t, h) (7.3)

In order to determine β, we set h = 0 so that (7.3) becomes:

λp2−1M(λp1t, 0) = M(t, 0)

and using property (7.2), we set λ = (−t)−1/p1 to get:

M(t, 0) = (−t)
1−p2
p1 M(−1, 0)

By definition of the β critical exponent, we have:

β =
1− p2

p1
(7.4)

Exponent δ Using again (7.3), we can determine the exponent δ setting t = 0:

M(0, h) = λp2−1M(0, λp2h)

Now, using again (7.2) we set λ = h−1/p2 and get:

M(0, h) = h
1−p2
p2 M(0, 1)

so that:
δ =

p2

1− p2
(7.5)

Now we can also solve (7.4) and (7.5):

p1 =
1

β(δ + 1)
p2 =

δ

δ + 1
(7.6)

from which we see that the gap exponent is:

∆ =
p2

p1
= βδ (7.7)

1We should in principle derive with respect to H , but since h ∝ βH , the β factors simplify on both sides.
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Exponent γ In order to obtain the magnetic susceptibility, we derive twice (7.1) with respect
to h, to get:

λ2p2χT (λp1t, λp2h) = λχT (t, h) (7.8)

The exponent γ describes the behaviour of χT for t→ 0 when no external field is present. What
we can now see is that the scaling hypothesis leads to the equality of the exponents for t→ 0+

and t→ 0− (which we just assumed for simplicity in 1.5).

Setting h = 0 and λ = (−t)−1/p1 we get:

χT (t, 0) = (−t)−
2p2−1
p1 χT (−1, 0)

and if we call γ− the critical exponent for t→ 0−, we see that:

γ− =
2p2 − 1

p1

In order to compute the exponent γ+ that describes the behaviour of χT for t → 0+, we set
λ = t−1/p1 , so that (7.8) becomes:

χT (t, 0) = t
− 2p2−1

p1 χT (1, 0)

so that indeed:

γ+ =
2p2 − 1

p1

We therefore see explicitly that:

γ+ = γ− = γ =
2p2 − 1

p1
(7.9)

which, using (7.6), leads to:
γ = β(δ − 1) (7.10)

Exponent α In order to determine the behaviour of the specific heat (at constant external field)
near the critical point, we derive (7.1) twice with respect to the temperature, so that:

λ2p1CH(λp1t, λp2h) = λCH(t, h)

Setting h = 0 and λ = (−t)−1/p1 :

CH(t, 0) = (−t)−
(

2− 1
p1

)
CH(−1, 0)

so:

α− = 2− 1

p1

Again, we can see that this exponent is equal to the one that we get for t → 0+; in fact, setting
λ = t−1/p1 :

CH(t, 0) = t
−
(

2− 1
p1

)
CH(1, 0)

so that indeed α+ = α−. Therefore:

α = 2− 1

p1
(7.11)
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Griffiths and Rushbrooke’s equalities If we now substitute (7.6) into (7.11), we get:

α+ β(δ + 1) = 2

This is Griffiths equality, which we have already encountered in 1.5.1 as an inequality.
On the other hand, Rushbrooke’s equality is obtained using (7.4) and (7.10) to determine p2 and
p1 and then substituting into (7.11):

α+ 2β + γ = 2

We therefore see, as anticipated in 1.5.1, that the static scaling hypothesis allows to show that
they are indeed exact equalities.

An alternative expression for the scaling hypothesis We can re-express (7.1) in another fash-
ion often used in literature. If we set λ = t−1/p1 , then:

fs(1, t
−p2/p1h) = t−1/p1fs(t, h)

From (7.7) and (7.11), we can rewrite this as:

fs(t, h) = t2−αfs

(
1,
h

t∆

)
(7.12)

which is the most used form of the scaling hypothesis in statistical mechanics.

As we can notice, we have not considered the critical exponents η and ν; this will be done
shortly in 7.2.

7.1.2 Rescaled state equation

Besides the relations between critical exponents, Widom’s static scaling theory allows us to
make predictions on the shape of the state equation of a given system. Let us now see how,
again for a magnetic system.

We begin from (7.3):
M(t, h) = λp2−1M(λp1t, λp2h)

If we set λ = |t|−1/p1 :

M(t, h) = |t|
1−p2
p1 M

(
t

|t|
,

h

|t|p2/p1

)
and using (7.6) and (7.7):

M(t, h)

|t|β
= M

(
t

|t|
,
h

|t|∆

)
(7.13)

We can therefore define the rescaled magnetization and the rescaled magnetic field:

m̃ := |t|−βM(t, h) h̃ := |t|−∆h (7.14)

so that (7.13) becomes:
m̃ = M(±1, h̃) (7.15)

where +1 corresponds to t > 0 (namely T > Tc) and −1 to t < 0 (i.e. T < Tc).

Equation (7.15) means that if we measure M and h and rescale them as in (7.14), all the ex-
perimental data should fall on the same curve independently of the temperature T ; there are of
course two possible curves (not necessarily equal), one for T > Tc and one for T < Tc (which
correspond to M(1, h) and M(−1, h)).
These predictions are in perfect agreement with experimental results2, and are one of the great-
est successes of Widom’s static scaling theory.

2See for example [8], pg. 119
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7.2 Kadanoff’s scaling and correlation lengths

As we have seen, Widom’s static scaling theory allows us to determine exact relations between
critical exponents, and to interpret the scaling properties of systems near a critical point.
However, this theory is based upon equation (7.1) but gives no physical interpretation of it; in
other words, it does not tell anything about the physical origin of scaling laws. Furthermore, as
we have noticed Widom’s theory does not involve correlation lengths, so it tells nothing about
the critical exponents ν and η.

We know (see 5.1.2) that one of the characteristic traits of critical phenomena is the divergence
of the correlation length ξ, which becomes the only physically relevant length near a critical
point. However, by now we are unable to tell if and how this is related to the scaling hypoth-
esis (7.1); everything will become clearer within the framework of the Renormalization Group
(see chapter 8), in which we will see that (7.1) is a consequence of the divergence of correlation
length.

Nonetheless, before the introduction of the Renormalization Group Kadanoff proposed a plau-
sibility argument for (7.1) applied to the Ising model, which we are now going to analyse.
We will see that Kadanoff’s argument, which is based upon the intuition that the divergence
of ξ implies a relation between the coupling constants of an effective Hamiltonian and the
length on which the order parameter is defined, is correct in principle but not in detail because
these relations are in reality more complex than what predicted by Kadanoff; furthermore,
Kadanoff’s argument does not allow an explicit computation of critical exponents.
We will have to wait for the Renormalization Group (chapter 8) in order to solve these prob-
lems.

7.2.1 Kadanoff’s argument for the Ising model

Let us consider a d-dimensional Ising model with hypercubic lattice with lattice constant a;
assuming nearest-neighbour interactions the Hamiltonian of the system will be:

−βH = K
∑
〈ij〉

SiSj + h
∑
i

Si

where K = βJ and h = βH , as usual.

Since the values of the spin variables are correlated on lengths of the order of ξ(T ), the spins
contained in regions of linear dimension `a, with ` such that:

a� `a� ξ(T )

will behave, statistically, as a single unit.
We can therefore imagine to carry out, similarly to what we have seen for the Ginzburg-Landau
theory (see 6.6.2), a coarse graining procedure were we substitute the spin variables Si inside
a “block” of linear dimension `a (which will therefore contain `d spins) with a single block spin;
the total number of blocks will of course be Nb = N/`d.
Considering the I-th block, we can define the block spin SI as:

SI =
1

|m`|
· 1

`d

∑
i∈I

Si

where the mean magnetization of the I-th block m` is:

m` =
1

`d

∑
i∈I
〈Si〉
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(a) Original system

(b) Block spins

(c) Final rescaled system

Figure 7.1: Kadanoff’s coarse graining procedure in two dimensions

This way, the new block spin variables can assume only the values ±1, just like the original
ones.

In the end we are left with a system of block spins on a hypercubic lattice with lattice constant
`a. We can therefore rescale the spatial distances between the degrees of freedom of our system:

~r` =
~r

`
(7.16)

In other words, since `a is now the characteristic length of the system we are measuring dis-
tances in units of `a (just like in the original one we measured distances in units of a).
The coarse graining procedure we have just seen is described in figure 7.1 for a two-dimensional
Ising model.

Kadanoff’s argument now proceeds with two assumptions.

Assumption 1. In analogy to what happens in the original system, we assume that the block spins
interact with the nearest neighbours and an external effective field (just like the original ones do).

This means that the Hamiltonian of the coarse grained system of block spins has the same form
of the original one, of course provided that the spins, coupling constants and external fields are
redefined. If we call K` and h` these new constants (of course K1 = K and h1 = h) the new
effective Hamiltonian is:

−βH` = K`

∑
〈IJ〉

SISJ + h`

N/`d∑
I=1

SI

Since in the new system the lengths have been rescaled by a factor `, as in (7.16), this means
that also the correlation length of the system has to be measured in units of `a, and in particular
we will have:

ξ` =
ξ

`

This means that the new system has a lower correlation length, and it will thus be farther from
the critical point with respect to the original one, and so will have a new effective tempera-
ture t`.
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Similarly, in the coarse grained system the magnetic field will be rescaled to an effective one:

h
∑
i

Si = h
∑
I

∑
i∈I

Si = hm``
d
∑
I

SI := h`
∑
I

SI (7.17)

which implies that there is a relation between the new magnetic field and the mean magnetiza-
tion:

h` = hm``
d (7.18)

Since the Hamiltonian of the block spin system has the same form of the original one, the same
will be true also for the free energy, provided that h, K and N are substituted with h`, K` and
N/`d; in particular, considering the singular part fs of the free energy density we will have:

N

`d
fs(t`, h`) = Nfs(t, h)

and so:
fs(t`, h`) = `dfs(t, h) (7.19)

In order to proceed, we now need the second assumption.

Assumption 2. We assume that:

t` = t`yt h` = h`yh yt, yh > 0

The justification of this assumption lies in the fact that we are trying to understand the scaling
properties of our system near a critical point, and these are the simplest possible relations
between (t, h) and (t`, h`) that satisfy the following symmetry requirements:

– when h→ −h, then h` → −h`

– when h→ −h, then t` → t`

– when t = h = 0, then t` = h` = 0

The exponents yt and yh are for now unspecified, apart from the fact that they must be positive
(so that the coarse grained system is indeed farther from the critical point with respect to the
original one).

If we use this assumption in (7.19) we get:

fs(t, h) =
1

`d
fs(t`

yt , h`yh)

This is very similar to Widom’s scaling hypothesis (7.1), where the parameter λ is the inverse
of the block volume `d.
Since ` has no specified value, we can choose the one we want and again we use the properties
of generalized homogeneous functions to eliminate one of the arguments of fs. In particular,
setting ` = |t|−1/yt we get:

fs(t, h) = |t|d/ytfs

(
1, h|t|−yh/yt

)
where the gap exponent is now ∆ = yh/yt; comparing this equation with (7.12) we have:

2− α =
d

yt
(7.20)

This relation will be used in the following, after we have discussed the scaling of correlation
functions.
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Kadanoff’s scaling for correlation functions Let us now consider the correlation function of
the block spin system:

G(~r`, t`) = 〈SISJ〉 − 〈SI〉 〈SJ〉

where ~r` is the vector of the relative distance between the centers of the I-th and J-th block
(measured in units of `a, as stated before).
We want now to see how this correlation length is related to the one of the original system
G(~r, t).
From (7.18) we have m` = h``

−d/h = `yh−d, and using also (7.17) we get:

G(~r`, t`) = 〈SISJ〉 − 〈SI〉 〈SJ〉 =
1

`2(yh−d) · `2d
∑
i∈I

∑
j∈J

(〈SiSj〉 − 〈Si〉 〈Sj〉) =

=
`2d

`2(yh−d) · `2d
(〈SiSj〉 − 〈Si〉 〈Sj〉) = `2(d−yh)G(~r, t)

Introducing also the dependence on h, we have:

G

(
~r

`
, t`yt , h`yh

)
= `2(d−yh)G(~r, t, h)

which is an equivalent of (7.1) for the correlation function.
Again, we can remove the dependence on t setting ` = t−1/yt so that:

G(~r, t, h) = t
2
d−yh
yt G

(
~rt1/yt , 1, ht−yh/yt

)
Now, ~r scales with ` as all the lengths of our system, and since we have set ` = t−1/yt we have
rt1/yt = 1. Therefore:

G
(
~rt1/yt , 1, ht−yh/yt

)
=
(
rt1/yt

)−2(d−yh)
FG

(
~rt1/yt , ht−yh/yt

)
where in the last step we have defined FG (a, b) = G (a, b, 1). Therefore:

G(~r, t, h) =
1

r2(d−yt)
FG

(
~rt1/yt , ht−yh/yt

)
With the choice ` = t−1/yt we further have that the correlation length scales as:

ξ = `ξ` = ξ`t
−1/yt

so we also have:
ν =

1

yt

This equation together with (7.20) leads to the hyperscaling relation:

2− α = νd

Hyperscaling relations are known to be less robust than the normal scaling relations between
critical exponents (for example, for Hamiltonians with long-ranged power law interactions
hyperscaling relations don’t hold).



Chapter 8

The Renormalization Group

Kadanoff’s argument for the Ising model allows us to explain the scaling form of the free en-
ergy density and of the correlation length near the critical point. However, as we have seen,
it is unable to predict the values of the scaling exponents yt and yh (and thus ultimately of the
critical exponents), nor can it explain why universality occurs.

We will see that these problems are solved with the introduction of the Renormalization Group
(done by K. G. Wilson at the beginning of the ’70s), which we will call simply “RG” from now
on for the sake of simplicity.
The RG is based upon the correct “intuition” of Kadanoff’s argument that the coupling con-
stants of a Hamiltonian change if we coarse-grain the system (or in other words we “look” at
it on different spatial scales); however, this “intuition” strictly speaking is not correct since we
have seen that in Kadanoff’s procedure we assume that after the coarse-graining procedure the
Hamiltonian of the system has exactly the same form: as we will see, this is not true in general
because new terms can appear after we coarse-grain the system.

8.1 Basic ideas of the Renormalization Group

The application of the RG consists in the recursive enactment of a procedure made of two prin-
cipal steps:

1. The first is an actual realization of a coarse graining procedure, also called decimation,
like the one introduced by Kadanoff for the Ising model; in general this procedure must
integrate the degrees of freedom of the system on scales of linear dimension `a which
must be much larger than the characteristic microscopic scale a of the system but also
much smaller than the correlation length ξ: a� `a� ξ.
After the decimation, we are left with a new effective Hamiltonian.

2. The second consists in the rescaling (or renormalization) of the system, so that the “new”
microscopic scale of the system is again a but in the “new units of measure”. In other
words we rescale the distances dividing them by `:

~rnew = ~r/`

As we have seen, this means that the new correlation length ξnew = ξ/` is smaller than
the original one, so our system is farther from criticality after the decimation. This way,
the whole procedure can be seen (as realised by Kadanoff) as a transformation K → K ′

of the coupling constants of the Hamiltonian of the system.

To make an example, suppose we are given a HamiltonianH[K] which depends on an arbitrary
number of coupling constants [K] = ~K = (K1,K2, . . . ) (in the case of an Ising model with

199
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nearest-neighbour interaction and an external field there are only two coupling constants, K =
K1 and h = K2). For what we have just stated the action of the RG can be expressed as a
transformation of the form:

[K ′] = R`[K] (8.1)

where R` is called RG transformation, also referred to as recursion relation. We suppose that the
function R` is analytic (no matter how complicated it may be).
The set of transformations R` form a semigroup1, because if we subsequently apply two trans-
formations R`1 and R`2 on two different length scales `1 and `2 we have:

[K ′] = R`1 [K] [K ′′] = R`2 [K ′] = R`2R`1 [K] ⇒ R`2`1 [K] = R`2R`1 [K] (8.2)

but in general the inverse of a given transformation R` does not exist.
There is no general way to construct the function R`: depending on the system and on the case
considered we can choose different ways to carry out the decimation, and in general (as we will
see) for a given system many different RG transformations can be built. In general such pro-
cedures can be done either in coordinate space (real space Renormalization Group) or in Fourier
space (momentum shell Renormalization Group).

In terms of the coupling constants [K] the partition function of the original system is:

ZN [K] = Tr e−βH[K]

while the free energy density (for the sill finite-sized system):

fN [K] = −kBT
N

lnZN [K]

Now, if the RG transformation integrates the degrees of freedom on the spatial scale `a then
the number of degrees of freedom will decrease by a factor `d, if d is the dimensionality of the
system; in other words, after the RG transformation R` we are left with N ′ = N/`d degrees of
freedom.

Considering Kadanoff’s block transformation (but the essence of our statements is valid in
general, of course provided the trivial generalizations), the decimation is performed doing a
“partial trace” of the degrees of freedom {Si} with the constraints that the block spins {SI}
have fixed values (of course determined in the way we choose). Formally, we can write:

e−βH
′
N′ ([K

′],S′I) = Tr′{Si} e
−βHN ([K],Si) = Tr{Si} P (Si, S

′
I)e
−βHN ([K],Si) (8.3)

where Tr′ is the constrained trace, while P (Si, S
′
I) is the projection operator, which “incorpo-

rates” the constraints and allows us to write an unconstrained trace. In general this operator
must be built “by hand”.
For example, in the case of Kadanoff’s block transformation we can assign the block spins S′I
their values with the “majority rule”, i.e. we build (hyper)cubic blocks of side (2`+ 1)a (so that
each one contains an odd number of spins) and set:

S′I = sgn

(∑
i∈I

Si

)

then S′I = ±1 and the projection operator can be written as:

P (Si, S
′
I) =

∏
I

δ

[
S′I − sgn

(∑
i∈I

Si

)]
1What we are now studying should be called Renormalization Semigroup, but it is simply known as group.
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As we can see, doing an unconstrained trace with this operator is equivalent to performing the
constrained trace.

The decimation procedure must in general satisfy three requirements:

– e−βH
′
N′ ([K

′],S′I) ≥ 0, so that H′ can be indeed considered an effective Hamiltonian. From
(8.3) we see that this requirement is satisfied if P (Si, S

′
I) ≥ 0

– The effective Hamiltonian H′ must have the same symmetry properties of the original
one. This means (and this is the great improvement with respect to Kadanoff’s argument)
that the decimation can make some new terms appear in the coarse-grained Hamiltonian,
as long as they respect the same symmetries of the original system. In more “formal”
words, if Km = 0 in HN but its relative term is allowed by the symmetry group of HN
itself, then we can have K ′m 6= 0 inH′N ′ .
For example, in 8.5.3 we will see that for a bidimensional Ising model with nearest-
neighbour interactions and H = 0, after the decimation new four-spin interaction terms
can appear, and they are still invariant under parity (which is the symmetry group of the
initial Hamiltonian).
In order to satisfy this requirement, also the projection operator P (Si, S

′
I) must satisfy the

symmetries of the original Hamiltonian

– The last requirement is that the decimation leaves invariant the partition function (not the
Hamiltonian!):

ZN ′ [K
′] = ZN [K]

From (8.3) we see that this is true if:

Tr{S′I} P (Si, S
′
I) =

∑
S′I

P (Si, S
′
I) = 1

From the last requirement we can also see how the free energy density of the system changes
under the action of the RG:

1

N
lnZN [K] =

`d

N`d
lnZN ′ [K

′] = `−d
1

N ′
lnZN ′ [K

′] ⇒ fN [K] = `−dfN ′ [K
′]

which is the scaling form of the free energy density as obtained by Kadanoff (equation (7.19)).

8.2 Singular behaviour in the Renormalization Group

We have stated that in general the RG transformations R` are analytic, so we might ask: where
does the singular behaviour of a system near a critical point come from?
Like what we have seen in 5.1.1 this occurs in the thermodynamic limit, which in this case is
obtained when we apply the RG transformation an infinite number of times.

In general, after the n-th iteration of the RG the coarse-graining length of the system will be `n

and the coupling constants [K(n)]. As n increases the “vector” of coupling constants describes
a “trajectory” in the space of all the possible coupling constants, often called Hamiltonian space
or theory space; we call RG flow the set of all the trajectories that start from different initial
conditions, i.e. different initial Hamiltonians.
In general, these trajectories can form strange attractors or complex limit cycles; however, it is
almost always found that they are simply attracted towards or ejected from fixed points (cases
where this doesn’t occur are really exotic), so in the following we will assume that the RG flow
only exhibits fixed points.
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The study of the properties of the RG flow near these fixed points is crucial, since as we will see
it is that that will allow us to actually explain universality and predict the values of the critical
exponents.
We therefore proceed to study such points.

8.2.1 Fixed points of the Renormalization Group flow

Suppose we know R` (in 8.5 we will see explicitly how to construct them). If [K∗] is a fixed
point of the RG flow, by definition we have:

R`[K
∗] = [K∗]

Then, in general from the Hamiltonian of a system we can determine the correlation length ξ,
and if [K ′] = R`[K] we know that:

ξ[K ′] = ξ[K]/`

Therefore for a fixed point we have:

ξ[K∗] = ξ[K∗]/`

which implies that ξ[K∗] is either zero or infinity. A fixed point with ξ = ∞ is called critical,
while if ξ = 0 trivial.
Clearly, every fixed point [K∗] can have its own basin of attraction, i.e. a set of points that under
the action of the RG flow tends to [K∗].

An important result concerning the basin of attraction of critical fixed points is the following:

Theorem. The correlation length is infinite for every point in the basin of attraction of a critical fixed
point of the RG flow.

Proof. Call [K] the initial set of coupling constants, after n iterations of the RG the correlation
length of the system will be such that:

ξ[K] = `ξ[K(1)] = · · · = `nξ[K(n)] ⇒ ξ[K] = `nξ[K(n)]

If we now take the limit n → ∞ the right hand side diverges if K(n) → K∗, i.e. if [K] belongs
to the basin of attraction of [K∗]. Therefore, ξ[K] =∞.

The basin of attraction of a critical fixed point is also called critical manifold.
We can argue that the fact that all the points of a critical manifold flow towards the same fixed
point (i.e. the same Hamiltonian) is the basic mechanism on which universality is based upon,
but this is by no means a complete explanation, since universality involves the behaviour of
systems near a critical point and we still have said nothing about that.
We can however note the following fact: starting from any point in theory space, iterating the
RG transformation and identifying the fixed point towards which the system flows, the phase
of the original point in theory space (i.e. in the phase diagram) will be described by this fixed
point. Therefore, every phase of the system is “represented” by a fixed point of the RG flow.

As we will later see (and will become clearer in 8.2.3, 8.3 and 8.5), critical fixed points describe
the singular critical behaviour while trivial fixed points are related to the bulk phases of the
system: therefore, the knowledge of the location and nature of the fixed points of the RG flow
can give us hints on the structure of the phase diagram of the system, and the behaviour of the
flow near critical fixed points allows us to calculate the values of the critical exponents.
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8.2.2 Renormalization Group flow near a fixed point

In order to study the behaviour of the RG flow near a fixed point ~K∗, let us take a slight per-
turbation from it, namely we set:

~K = ~K∗ + δ ~K

where δ ~K is a small displacement. Applying the RG flow, in components we will have:

K ′j = R`( ~K
∗ + δ ~K)j = K∗j +

∑
i

∂K ′j
∂Ki |K∗

δKi +O(δK2) (8.4)

Neglecting all the terms beyond the linear ones, we can write the action of the linearised RG
transformation in terms of the displacements δ ~K and δ ~K ′ as:

δ ~K ′ = T δ ~K where T ij =
∂K ′j
∂Ki |K∗

Of course T is a square matrix but in general it is not symmetric, so it is not diagonalizable and
its eigenvalues can be complex (and we also must distinguish between left and right eigenvec-
tors).
However we suppose T to be symmetric (which, as before, is almost always the case) so that it
can be diagonalized.
If we call λ`(σ) and ~e (σ) the σ-th eigenvalue and relative eigenvector of T (`) (where we are
explicitly writing the length scale of the decimation), in components the action T (`) will be:

T
(`)
ij e

(σ)
j = λ

(σ)
` e

(σ)
i (8.5)

From the semigroup property (8.2) of the RG transformation we have:

T (`)T (`′) = T (``′)

and so from (8.5):
λ

(σ)
` λ

(σ)
`′ = λ

(σ)
``′

This is a functional equation which can be solved in the following way: if we write the eigen-
values explicitly as functions of `, namely λ`(σ) = λ(`)(σ), then differentiating with respect to `′

we will have
λ(σ)(`)λ′(σ)(`′) = `λ′(σ)(``′)

where with λ′ we mean that λ has been differentiated with respect to its argument. Setting now
`′ = 1 and defining λ′(σ)(1) = y−1

σ we get:

λ(σ)(`)

λ′(σ)(`)
= `yσ

which is easily solved to give:
λ

(σ)
` = `yσ

where, as we have defined it, yσ is a number (to be determined) independent of `.
To see how δ ~K changes under the action of T let us find out how its components along the
directions determined by the eigenvectors ~e (σ) change2. In other words, we write:

δ ~K =
∑
σ

a(σ)~e (σ) a(σ) = ~e (σ) · δ ~K

2Note: since T (`) is diagonalizable its eigenvectors are orthonormal.
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and applying T (`):

δ ~K ′ = T δ ~K = T
∑
σ

a(σ)~e (σ) =
∑
σ

a(σ)λ
(σ)
` ~e (σ) :=

∑
σ

a′(σ)~e (σ)

where in the last step we have defined the components a′(σ) of δ ~K ′ along ~e (σ). We therefore
see that the behaviour of δ ~K along the eigenvectors ~e (σ) depends on the magnitudes of the
eigenvalues λ`(σ). In particular, we can distinguish three cases:

|λ(σ)
` | > 1: this implies that a′(σ) grows

|λ(σ)
` | = 1: this implies that a′(σ) doesn’t change (its behaviour can depend on the higher or-

ders in the expansion (8.4) that we have neglected)

|λ(σ)
` | < 1: this implies that a′(σ) shrinks

These three cases are given, respectively, the following terminology:

– relevant eigenvalues/directions/eigenvectors

– marginal eigenvalues/directions/eigenvectors

– irrelevant eigenvalues/directions/eigenvectors

The number of irrelevant directions of a fixed point is equal to the dimension of its critical
manifold, while the number of relevant directions is equal to its codimension.
Let us note that the eigenvalues and their possible relevance depend on the matrix T , which in
turn depends on the fixed point considered: this means that the terms “relevant”, “irrelevant”
or ”marginal” must always be specified with respect to the particular fixed point considered.

8.2.3 Global properties of the Renormalization Group flow

We now want to show qualitatively that the global behaviour of the RG flow determines the
phase diagram of the system.
Since as we have already stated previously every fixed point of the RG flow can correspond to
a phase of the system, it is very important to classify the fixed points of a possible RG flow. This
classification can be done using the codimension c and the correlation length ξ of the point. We
shall now see some results.

– Fixed points with c = 0 and ξ = 0 are called sinks (since they have no relevant directions,
so all the points in their neighbourhoods flow towards them), and correspond to stable
bulk phases of the system; the nature of the coupling constants at the sink characterizes
the relative phase.
For example, a three-dimensional Ising model with nearest-neighbour interaction and in
an external field turns out to have two sinks at (H = +∞, T = 0) and (H = −∞, T = 0)
(note that considering K a coupling constant is equivalent to considering T as such),
which correspond to the fact that, for all temperatures, in a positive (negative) external
field the system has a positive (negative) magnetization

– There are two types of fixed points with c = 1, called discontinuity and continuity fixed
points. In the case of the Ising model, both have ξ = 0 (but in other models we can have
also fixed points with c = 1 and ξ =∞).
The former correspond to first order transitions where one of the order parameters changes
abruptly. For example, in the same case as before the line of points (H = 0, T < Tc) flows
under the RG towards the discontinuity point (H = 0, T = 0).
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The latter represents a phase of the system, generally a disordered one like the paramag-
netic phase of the Ising model; in this case the line (H = 0, T > Tc) flows towards the
continuity point (H = 0, T =∞). These points are generally not really interesting

– Fixed points with c ≥ 2 can describe either points of multiple phase coexistence (if ξ = 0)
or multicritical points (if ξ =∞).
In the simplest case, i.e. c = 2, such fixed points correspond to triple points if ξ = 0
or critical points if ξ = ∞. In each case, a useful way to interpret the presence of two
relevant directions is that these represent the two variables that must be tuned in order to
place the system in the appropriate point (for example in the case of a magnet we must
set H = 0 and T = Tc)

8.3 Universality in the Renormalization Group

Let us now see how the formalism of the RG can explain universality.

Suppose we start from a system with a Hamiltonian H which depends on some coupling con-
stants [K]; suppose also that we can write a RG transformation which in general gives rise to
no more than D couplings3. Under the action of the RG the initial physical Hamiltonian will
move in the D-dimensional theory space and follow the RG flow.
Let us callH∗ the fixed point towards whichH tends, and assume it has only one relevant direc-
tion and D− 1 irrelevant ones; linearising the flow nearH∗ we therefore identify D− 1 linearly
independent vectors which constitute the hyperplane tangent in H∗ to its basin of attraction
(i.e. the linearisation of the critical manifold nearH∗). In general, if we “zoom out” and “look”
also in regions far from the fixed point H∗, in theory space there will be a D − 1-dimensional
critical manifold C.
Let us now consider a generic model in theory space; remembering that in general β = 1/kBT
is included in the definition of the coupling constants Ki, if we change the temperature of
the system all the Ki-s will change and thus the model will describe a trajectory P in the D-
dimensional theory space, called physical subspace (because we can move along it by changing
a physically accessible parameter like the temperature).
To make an explicit example, let us consider an Ising model with nearest- and next-nearest-
neighbour interactions in the absence of any external field, so that:

−βH = K1

∑
〈ij〉

SiSj +K2

∑
i,j=n.n.n.

SiSj

In this case the physical subspace can be a straight line once the ratio K1/K2 has been fixed,
and this line goes from K1 = K2 = 0 (when T =∞) to K1 = K2 =∞ (when T = 0).
The physical subspace will in general intersect the critical manifold C in some point [Kc]: this is
the critical point of our system, and as it must be we have reached it by only varying its tempera-
ture.

Now, if we consider two different physical systems they will be characterized by two differ-
ent physical subspaces P1 and P2 in theory space. In general, they will intersect the critical
manifold C in different points, and so they will have different critical temperatures4; however,
under the action of the RG they will flow towards the same critical fixed point, and since (as
we are going to show explicitly in the following section) the critical behaviour of a system is
determined by the properties of the RG flow near a fixed critical point, these two systems will

3For what we want to show it is not essential that D is finite, but we suppose it to be so for the sake of simplicity.
4This makes sense since we have already noticed that the exact value of the critical temperature depends strongly

on the microscopic details of the system.
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K1

K2

P

C

[K∗]

[Kc]

Figure 8.1: RG flow for the considered Ising model

behave identically near their critical points.
This is how universality is explained within the RG.

In the case of the Ising model we are considering, the situation can be represented in the two-
dimensional theory space as shown in figure 8.1.

8.4 The origins of scaling and critical behaviour

Let us consider a fixed point of the RG flow of a generic system, and assume that it has two
relevant directions corresponding to the coupling constants T 5, the temperature, and H , the
external field. We suppose that T and H are transformed under the RG as:

T ′ = RT` (T,H) H ′ = RH` (T,H)

where RT` and RH` are analytic functions given by the coarse graining procedure.
The fixed points (T ∗, H∗) of the flow will be given by the solutions of:

T ∗ = RT` (T ∗, H∗) H∗ = RH` (T ∗, H∗)

Linearising the transformation around (T ∗, H∗), in terms of the reduced variables t = (T −
T ∗)/T ∗ and h = (H −H∗)/H∗ we have:(

t′

h′

)
= T

(
t
h

)
where:

T =

(
∂RT` /∂T ∂RT` /∂H
∂RH` /∂T ∂RH` /∂H

)
|T ∗,H∗

As previously stated we suppose T to be diagonalizable. We therefore write its eigenvalues as:

λt` = `yt λh` = `yh

Note that we can always do that, it is just a simple definition. In other words, we are defining
yt and yh as:

yt =
lnλt`
ln `

yh =
lnλh`
ln `

(8.6)

5We have already stated that considering K as a coupling constant is equivalent to considering T as such.
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This way we can write:(
t′

h′

)
=

(
λt` 0
0 λh`

)(
t
h

)
⇒

(
t′

h′

)
=

(
`ytt
`yhh

)
After n iterations we will have:

t(n) = (`yt)n t h(n) = (`yh)n h

and since ingeneral we know that ξ(t′, h′) = ξ(t, h)/`:

ξ(t, h) = `nξ(`nytt, `nyhh) (8.7)

This is the scaling law of the correlation length.
From this we can determine the critical exponent ν; in fact, setting h = 0 and choosing ` so that
t`nyt = b with b a positive real number6, we have:

`n =

(
b

t

)1/yt

⇒ ξ(t) =

(
t

b

)−1/yt

ξ(b, 0)

Since in general ξ ∼ t−ν , we get:

ν =
1

yt

This is an extremely important result! In fact, from (8.6) we see that once the RG transformation
R` is known, yt is straightforward to compute and so we are actually able to calculate ν and
predict its value!
We can do even something more (including giving yh a meaning) from the scaling law of the
free energy density. After n iterations of the RG we have:

f(t, h) = `−ndf(t(n), h(n)) = `−ndf(`nytt, `nyhh)

and choosing ` so that `nytt = byt , then:

f(t, h) = td/ytb−df(byt , byhh/tyh/yt)

Comparing this to the form (7.12) of the scaling law we see that:

2− α =
d

yt
∆ =

yh
yt

Irrelevant variables We may also include the irrelevant variables in the scaling law of f :

f(t, h, k3, k4, . . . ) = `−df(tλt`, hλ
h
` , k3λ

(3)
` , k4λ

(4)
` . . . )

where λt`, λ
h
` > 1 and λ(i≥3)

` , · · · < 1. After n iterations we have:

f(t, h, k3, k4, . . . ) = `−dnf(t`nyt , h`nyh , k3`
ny3 , k4`

ny4 , . . . )

where yi≥3 < 0 in accordance with the fact that λ(i≥3)
` < 1.

Setting `nytt = b we have:

f(t, h, k3, k4 . . . ) = b−dtd/ytf(byt , byhht−yh/yt , by3k3t
−y3/yt , k4t

−y4/yt , . . . )

6Remember that the value of ` is not fixed, so we can choose the one we prefer; in this case we are making this
choice because ` does not necessarily have to be an integer.
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× ◦ ×
S1 S2 S3

× ◦ ×
S4 S5 S6

· · ·

Figure 8.2: Decimation to N/3 spins.
The spins over which we sum are indicated with a cross.

For t→ 0 the terms involving the irrelevant variables become vanishingly small, so we get:

f(t, h, k3, k4, . . . ) = td/ytb−df(byt , byhht−yh/yt , 0, 0, . . . )

Note that in the last step we have implicitly assumed that f is analytic in the limit ki≥3 → 0.
This assumption is however frequently false! When this happens, i.e. when the free energy
density is singular in the limit kj → 0 for a particular irrelevant variable kj , that variable is
termed dangerous irrelevant variable.
For example, considering the Landau free energy of the Ising model obtained as a saddle-point
approximation of the general functional partition function (equation (6.31)):

L =

∫ (
a

2
tm2 +

b

4
m4 +

k

2

(
~∇m

)2
− hm

)
dd~r

the parameter b of the quartic term is a dangerous irrelevant variable (we have seen in 6.6.3
that problems arise when we try to treat it as a perturbative parameter).

8.5 Renormalization Group in coordinate space

We now want to see how we can build the RG transformation R` from the coarse graining pro-
cedure.
We will first use two different decimation techniques for a one-dimensional Ising model, and
then see what happens for d = 2. As we have partially anticipated, we will see that as soon as
we will no longer work in the “easy” case d = 1 things will get really complicated because at
every iteration of the RG new interactions appear, and so the problem becomes rapidly impos-
sible to handle; we will therefore be forced to resort to approximations.

8.5.1 Decimation to N/3 spins for a one-dimensional Ising model with H = 0

Let us consider a one-dimensional Ising model with nearest-neighbour interaction and periodic
boundary conditions, without any external field (H = 0).
We choose to apply the coarse-graining procedure to our system by grouping spins in blocks
of three; this way the (i+1)-th block (with i = 0, 1, 2, . . . ) will be constituted by the spins S1+3i,
S2+3i and S3+3i (for example, the first block is [S1, S2, S3], the second one [S4, S5, S6] and so on).
In order to define the new block spin we could use the majority rule, but we further simplify
the problem requiring that the new block spin S′I coincides with the central spin S2+3i of the
block. In other words, for every block we set:

P (S′I ;S1+3i, S2+3i, S3+3i) = δS′I ,S2+3i

(for example for the first block we have P (S′1;S1, S2, S3) = δS′1,S2
).

Therefore, the coarse-graining procedure consists in summing over the spins at the boundaries
of the blocks and leaving untouched the central ones (in figure 8.2 we represent the situation,
where the spins over which we sum are indicated by a cross × and the ones leaved untouched
by a circle ◦).
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Now, using the notation introduced in 8.1 for the general theory, we have:

e−βH
′

= Tr{Si} P (S′I , Si)e
−βH = Tr{Si}

∏
I

δS′I ,S2+3i
· eK

∑
j SjSj+1 =

=
∑

{Si=±1}

δS′1,S2
δS′2,S5

· · · eKS1S2eKS2S3eKS3S4eKS4S5 · · · =

=
∑

{Si=±1}

eKS1S′1eKS
′
1S3eKS3S4eKS4S′2 · · ·

Let us therefore see how to perform the sum on the first two blocks, [S1, S2, S3]− [S4, S5, S6]:∑
S3,S4=±1

eKS
′
1S3eKS3S4eKS4S′2 (8.8)

From the definitions of cosh and sinh we can write:

eKSaSb = coshK(1 + tSaSb) where t = tanhK (8.9)

so that (8.8) becomes: ∑
S3,S4=±1

(coshK)3(1 + tS′1S3)(1 + tS3S4)(1 + tS4S
′
2)

Expanding the product and keeping in mind that S2
i = +1, we get:

(1 + tS′1S3)(1 + tS3S4)(1 + tS4S
′
2) =

= 1 + tS′1S3 + tS3S4 + tS4S
′
2 + t2S′1S4 + t2S′1S3S4S

′
2 + t2S3S

′
2 + t3S′1S

′
2

and clearly all the terms containing S3 or S4 (or both) vanish when we perform the sum∑
S3,S4=±1. Therefore, the result of the partial sum (8.8) for the first two blocks is:

22(coshK)3
∏
I

(1 + t3S′1S
′
2)

(where 22 comes from the fact that the constant terms 1 and t3S′1S
′
2 must be summed 22 times,

two for the possible values of S3 and two for S4).
Therefore, the partition function of the block spin system will be:

ZN ′ [K
′] = Tr{S′I} 22N ′ cosh3N ′ K(1 + t3S′IS

′
I+1) (8.10)

where N ′ = N/3 is the new number of spin variables.
However, we know that in general ZN ′ = Tr{S′I} e

−βH′ , so let us try to write (8.10) in this form.
We have:

22(coshK)3(1 + t3S′IS
′
I+1) = 22(coshK)3 coshK ′

coshK ′
(1 + t3S′IS

′
I+1)

and renaming t3 := t′, so that:
(tanhK)3 = tanhK ′ (8.11)

this term becomes:

22 (coshK)3

coshK ′
coshK ′(1 + t′S′IS

′
I+1) = 22 (cosh 1K)3

coshK ′
eK
′S′IS

′
I+1

where we have used (8.9). Therefore:

22 cosh3K(1 + t3S′IS
′
I+1) = e2 ln 2+ln

(coshK)3

coshK′ +K′S′IS
′
I+1
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t = 1

T = 0

t = 0

T =∞

Figure 8.3: RG Flow of (8.11)

and we can write:

−βH′({S′I}) = N ′g(K,K ′) +K ′
∑
I

S′IS
′
I+1

where:

g(K,K ′) = 2 ln 2 + ln
(coshK)3

coshK ′

The new effective Hamiltonian has therefore the same form of the original one with the rede-
fined coupling constant K ′, and exhibits also a new term (g(K,K ′)) independent of the block
spins.

Let us note that (8.11) is the recursion relation we are looking for:

K ′ = tanh−1(tanh3K)

Rewritten in the form t′ = t3, its fixed points are given by:

t∗ = t∗3

whose solutions are t∗ = 0 and t∗ = 1 (the case t∗ = −1 is neglected because K > 0 and so
tanhK > 0). After all, however, tanhK → 0+ if K → 0+ (i.e. T → ∞) and tanhK → 1− if
K → ∞ (i.e. T → 0+): in other words, the fixed point t∗ = 0 corresponds to T = ∞ while
t∗ = 1 to T = 0.
Since tanhK < 1 ∀K ∈ R, starting from any initial point t0 < 1 the recursion relation t′ = t3

makes t smaller every time, moving it towards the fixed point t∗ = 0. We can thus conclude
that t∗ = 1 is an unstable fixed point while t∗ = 0 is stable, as graphically represented in figure
8.3. Note that the fact that the flow converges towards T = ∞ means that on large spatial
scales the system is well described by a Hamiltonian with a high effective temperature, and so
the system will always be in the paramagnetic phase (except when T = 0).

Let us now see how the correlation length transforms.
We know that in general, if the decimation reduces the number of spins by a factor b (in the case
we were considering above, b = 3) we have to rescale distances accordingly, and in particular:

ξ(t′) = ξ(t)/b

where in general t′ = tb. Since b is in general arbitrary, we can choose b = const./ ln t and thus:

ξ(t′) = ξ(tb) = ξ(eb lnx) = ξ(econst.) =

(
const.

ln t

)−1

ξ(t)

Therefore:

ξ(t) =
const.

ln t
∼ 1

ln tanhK

which is the exact result we have found at the end of 5.4.4.
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◦ × ◦
S1 S2 S3

× ◦ ×
S4 S5 S6

· · ·

Figure 8.4: Decimation to N/2 spins, with the same notation as before

8.5.2 Decimation to N/2 spins for a one-dimensional Ising model with H 6= 0

Let us now see a different decimation procedure for the same one-dimensional Ising model,
when H 6= 0.
This time, as shown in figure 8.4, the idea of the procedure is to sum over the spins that are on
even sites and leaving unaltered those on odd sites.
We write the partition function as:

ZN (K,h) = Tr e−βH =
∑

{Si=±1}

eK
∑
i SiSi+1+h

∑
i Si =

=
∑
S1=±1

· · ·
∑

SN=±1

eK(S1S2+S2S3)+hS2+h
2

(S1+S3) · eK(S3S4+S4S5)+hS4+h
2

(S3+S5) · · ·

Indicating with S′i the spins that are kept untouched and summing over the N/2 even spins:

ZN (K,h) =
∑

{S′2i+1=±1}

∑
{S2i=±1}

eS2[K(S′1+S′3)+h]+h
2

(S′1+S′3)eS4[K(S′3+S′5)+h]+h
2

(S′3+S′5) · · · =

=
∑

{S′2i+1=±1}

[
e(K+h

2 )(S′1+S′3)+h + e(−K+h
2 )(S′1+S′3)−h

]
·
[
e(K+h

2 )(S′3+S′5)+h + e(−K+h
2 )(S′3+S′5)−h

]
· · · =

=
∑

{S′2i+1=±1}

N−1∏
i=0

[
e(K+h

2 )(S′2i+1+S′2i+3)+h + e(−K+h
2 )(S′2i+1+S′2i+3)−h

]
Now, since Z must not change after the RG transformation we can write:

ZN (K,h) = eNg(K,h)ZN ′(K
′, h′) = eNg(K,h) Tr{S′} e

−βH′ (8.12)

where:

−βH′(K ′, h′) = K ′
N ′−1∑
i=0

S′2i+1S
′
2i+3 + h′

N ′−1∑
i=0

S′2i+1

Since N ′ = N/2⇒ N = 2N ′, this means that:

ZN (K,h) = e2N ′g
∑

{S′2i+1=±1}

eK
′∑

i S
′
2i+1S

′
2i+3+h′

∑
i S
′
2i+1 =

∑
{S′2i+1=±1}

N ′−1∏
i=0

eK
′S′2i+1S

′
2i+3+h′

2
(S′2i+1+S′2i+3)+2g

Therefore, we must have:

e(K+h
2 )(S′2i+1+S′2i+3)+h + e(−K+h

2 )(S′2i+1+S′2i+3)−h = eK
′S′2i+1S

′
2i+3+h′

2
(S′2i+1+S′2i+3)+2g

and this equality must hold for all the possible values of S′2i+1 and S′2i+3. In particular:

S′2i+1 = S′2i+3 = 1 ⇒ e2K+2h + e−2K = eK
′+h′+2g

S′2i+1 = S′2i+3 = −1 ⇒ eh + e−h = eK
′−h′+2g (8.13)

S′2i+1S
′
2i+3 = −1 ⇒ eh + e−h = e−K

′+2g
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1 2

3

Figure 8.5: Introduction of a new effective interaction

The solutions of these equations are:

K ′ =
1

4
ln

cosh(2K + h) cosh(2K − h)

cosh2 h
h′ = h+

1

2
ln

cosh(2K + h)

cosh(2K − h)

g =
1

8
ln
[
16 cosh(2K + h) cosh(2K + h) cosh2 h

]
which are the recursion relations for this decimation procedure.
Defining:

x = e−4K y = e−2h z = e−8g

(where of course 0 ≤ x, y, z ≤ 1) equations (8.5.2) can be more easily written as:

x′ = x
(1 + y)2

(x+ y)(1 + xy)
y′ = y

x+ y

1 + xy
z′ =

z2xy2

(x+ y)(1 + xy)(1 + y)2

Note that x′ and y′ do not depend on z: this means that the constant g is not involved in the
singular behaviour of the free energy density. In fact, from (8.12) we have:

fN (K,h) =
1

2
fN ′(K

′, h′)− kBTg(K,h)

and since g does not influence the RG flow of the variables x and y (i.e. K and h), the critical
properties of the system are not altered by g; since as we know these are determined by the
behaviour of the singular part of f , g is part of the regular one.

8.5.3 Decimation in d > 1: proliferation of the interactions

As we have already stated, in d = 1 the recursion relations can be determined without great
problems and they don’t introduce new interactions. However this is not the case if d > 1, and
the value of the new coupling constants can’t be determined exactly, forcing us to use approxi-
mations.
Let us see with a generic example how the RG transformation can introduce new interactions
in a two-dimensional Ising model with nearest-neighbour interactions.

Suppose we divide our system in blocks containing an odd number of spins and, similarly to
what we have seen for d = 1 in 8.5.1, we sum over the spins on the boundary of the block and
leave unchanged the one at the center. Looking at figure 8.5, we see that the spin on the corder
of the block 2 is coupled to one spin in bock 1 and one in block 3. When we sum over the
spin in block 2 an effective coupling between blocks 1 and 3 will be established: we therefore
see that the coarse-graining procedure introduces next-nearest-neighbour interactions between
the blocks, so new terms are appearing in the Hamiltonian (which of course, as already stated,
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× ◦ ×
S′i−y

◦ × ◦
S′i−x σi S′i+x

× ◦ ×
S′i+y

Figure 8.6: Decimation for the two-dimensional Ising model

respect the symmetries of the original one).
We therefore understand that the iteration of the RG will introduce increasingly complicated
couplings: this is the so called proliferation of interactions.

Let us now see in detail how to face the problem of the proliferation for a two-dimensional
Ising model with nearest-neighbour interaction and H = 0.
We choose to coarse-grain the system summing over a “chessboard” of spins, as shown in
figure 8.6, which also defines the symbolic notation we are going to use.
We therefore have:

ZN = Tr{Si} e
K
∑
〈ij〉 SiSj =

∑
{S′i=±1}

∑
{σi=±1}

eK
∑
i(S′i−x+S′i+x+S′i−y+S′i+y)σi

and performing the sum over σi:

ZN =
∑

{S′i=±1}

∏
i

[
eK(S′i−x+S′i+x+S′i−y+S′i+y) + e−K(S′i−x+S′i+x+S′i−y+S′i+y)

]
=

=
∑

{S′i=±1}

∏
i

2 cosh
[
K(S′i−x + S′i+x + S′i−y + S′i+y)

]
The argument of cosh can assume three possible values, which come from the fact that the
24 = 16 possible spin configurations can be grouped into three categories: all spins aligned,
three spins aligned and one not, and two spins aligned and two not. As before, we want to write
ZN [K] = eNg(K,K

′)ZN ′ [K
′], and from what we have just seen we will have three conditions to

satisfy soH′ will contain at least three terms: in the coarse-grained Hamiltonian new terms are
appearing.
We can therefore try for example with the following guess for rewriting ZN :

2 cosh[K(S′i−x + S′i+x + S′i−y + S′i+y)] =

= z(K)eK
′(S′i−xS

′
i−y+S′i−xS

′
i+y+S′i+xS

′
i−y+S′i+xS

′
i+y)+L′(S′i−xS

′
i+x+S′i−yS

′
i+y)+Q′S′i−xS

′
i+xS

′
i−yS

′
i+y (8.14)

This way, besides nearest-neighbour interactions (K) we are introducing also next-nearest-
neighbour ones (K ′ and L′) and also four-spin cluster interactions (Q′), as shown in figure
8.7. Note also that the final set of spins resides on a square whose side is

√
2 times the original

one, so we have ` =
√

2 .
Inserting all the possible spin configurations in (8.14) we get the following equations:

2 cosh(4K) = z(K)e2K′+2L′+Q′ 2 cosh(4K) = z(K)e−Q
′

2 = z(K)e−2L′+Q′ 2 = z(K)e−2K′−2L′+Q′
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S′i−y

S′i−x

S′i+x

S′i+y

K ′

L′

Q′

Figure 8.7: New interactions introduced

0 Kc ∞

Figure 8.8: RG flow of (8.15)

Their solutions are given by:

z(K) = 2 cosh1/8(4K) cosh1/2(2K) K ′ =
1

4
ln cosh(4K)

L′ =
1

8
ln cosh(4K) Q′ =

1

8
ln cosh(4K)− 1

2
ln cosh(2K)

If we now reiterate the procedure, more complicated interactions will appear and the problem
becomes rapidly intractable. We therefore must do some approximations.
We choose to neglect Q′ (also because it is the only coupling that can become negative and
thus prevent the spins from aligning) and to omit the explicit dependence on L′ defining a new
constant K ′:

K ′new = K ′ + L′

This way the recursion relation involves only K:

K ′ =
3

8
ln cosh(4K)

Let us therefore see to which conclusions does this lead.
The fixed points are given by:

K∗ =
3

8
ln cosh(4K∗) (8.15)

and the non-trivial (K∗ 6= 0) numerical solution of this equation is Kc = 0.50698 . . . ; the exact
value found by Onsager is Kexact = 0.44069 . . . , so our approximation is good enough.
If now the initial value K0 of K is greater than Kc, then the sequence K(n) = 3

8 ln cosh(4K(n))
grows indefinitely, while ifK0 < Kc it tends to zero. Thus, the fixed pointsK∗ = 0 andK∗ =∞
are stable, while K∗ = Kc is unstable, as shown in figure 8.8.
Let us now linearise the recursion relation near Kc and compute a couple of critical exponents.
On the base of what we have seen in 8.4, if we call δK = K −Kc and δK ′ = K ′ −Kc we have:

δK ′ = λtδK where λt =
dK ′

dK |Kc

Therefore, since also ` =
√

2 , we get:

yt =
lnλt
ln `

=
1

ln
√

2
ln

(
dK ′

dK |Kc

)
=

ln
[

3
2 tanh(4Kc)

]
ln 2/2

= 1.070 . . .
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and so:
ν =

1

yt
= 0.9345 . . .

and from the hyperscaling relation:

α = 2− d

yt
= 0.131 . . .

Onsager’s exact result, as we know, gives α = 0 (since the specific heat diverges logarithmi-
cally) and thus ν = 1. We therefore see that our approximation is sufficiently accurate (even if
improvable).
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Appendix A

Volume of a hypersphere

In this appendix we will compute the volume of an `-dimensional hypersphere of radius R,
which we call V`(R). This is defined as:

V`(R) =

∫
Θ(R− |~p|)d~p

In order to calculate it we will use a “trick”.
First, we change variable defining ~z so that pi = Rzi and thus1:

V`(R) = R`
∫

Θ(1− |~z|)d~z = R`V`(1) (A.1)

We then have:
d

dR
V`(R) = `R`−1V`(1) =

∫
δ(|~p| −R)d~p

Multiplying both sides by e−R
2

and integrating over R from 0 to infinity:

V`(1)

∫ ∞
0

e−R
2
`R`−1dR =

∫ ∞
0

dR

∫
e−R

2
δ(|~p| −R)d~p

The right hand side is equal to:∫ ∞
0

dR

∫
e−R

2
δ(|~p| −R)d~p =

∫
d~p

∫ ∞
0

e−R
2
δ(|~p| −R) =

∫
d~pe−|~p|

2

Therefore:

`V`(1)

∫ ∞
0

R`−1e−R
2
dR =

∫
d~p
∏̀
i=1

e−p
2
i =

∏̀
i=1

∫
dpie

−p2
i︸ ︷︷ ︸√

π

= π`/2

If we now define t = R2, in the integral in the left hand side of the equation we recognise the
definition of Euler’s Γ function2:

`

∫ ∞
0

R`−1e−R
2
dR =

`

2

∫ ∞
0

e−tt
`
2
−1dt =

`

2
Γ

(
`

2

)
= Γ

(
`

2
+ 1

)
1We also use the fact that Θ(R(1− z)) = Θ(1− z), since R > 0.
2As a remainder, the Γ function is defined as:

Γ(n) =

∫ ∞
0

e−ttn−1dt

If n ∈ N, then Γ(n) = (n− 1)!.
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This way the volume of an `-dimensional sphere of unit radius is V`(1) = π`/2/Γ
(
`
2 + 1

)
, and

thanks to equation (A.1), in the end we have:

V`(R) =
R`π`/2

Γ
(
`
2 + 1

) (A.2)

Let us verify that this formula returns the values we expect for ` = 2 and ` = 3.
We first note that:

Γ

(
1

2

)
=

∫ ∞
0

e−tt−1/2dt =
√
π

Γ

(
5

2

)
=

3

2
Γ

(
3

2

)
=

3

2
· 1

2
Γ

(
1

2

)
=

3

4

√
π

This way:

V2(R) =
R2π2/2

Γ(2)
=
πR2

1!
= πR2 V3(R) =

R3π3/2

3
4

√
π

=
4

3
πR3

which is exactly what we expected.



Appendix B

The saddle point approximation

In this appendix we are going to see how the saddle point approximation works in general.
Let us define the class of integrals:

IN =

∫
eNf(x)dx N � 1

Suppose that f(x) has a unique maximum at x = x∗ and that lim|x|→∞ f(x) = −∞. Then,
expanding f around x∗ we have:

f(x) = f(x∗) +
(x− x∗)2

2
f ′′(x∗) +

(x− x∗)3

6
f ′′′(x∗) + · · ·

(and obviously f ′(x∗) = 0 because x∗ is a maximum). Setting z = x−x∗ we can write, stopping
the expansion at the third order:

IN ≈ eNf(x∗)

∫
eN

z2

2
f ′′(x∗)+N z3

6
f ′′′(x∗)dz

Calling y = z
√
N and remembering that f ′′(x∗) < 0 since x∗ is a maximum, we have:

IN = eNf(x∗) 1√
N

∫
e
− y

2

2
|f ′′(x∗)|+ y2

6
√
N
f ′′′(x∗)

dy

Therefore for very large N the term proportional to f ′′′(x∗) in the exponential (like all the fol-
lowing terms of the complete expansion) is negligible, so:

IN ≈ eNf(x∗) 1√
N

∫
e−

y2

2
|f ′′(x∗)|dy

and computing the Gaussian integral:

IN ≈

√
2π

N |f ′′(x∗)|
· eNf(x∗)

Therefore we see that the saddle point approximation essentially states that an integral of the
form IN can be approximated, provided that N is large, with the value of the integrand calcu-
lated at its maximum (up to a multiplicative factor).
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Appendix C

Stirling’s approximation

We want to derive here Stirling’s approximation, i.e. we want to show that for large n we have:

n! ∼
√

2πn
(n
e

)n
We start by writing n! with Euler’s Γ function:

n! =

∫ ∞
0

tne−tdt

Changing variable to s = t/n we get:

n! =

∫ ∞
0

snnne−snnds =

∫ ∞
0

sne−snnn+1ds

which we rewrite as:

n! =

∫ ∞
0

e−sn+n ln s+(n+1) lnnds = e(n+1) lnn

∫ ∞
0

en(ln s−s)ds

The last one is an integral in the form of those studied in appendix B; using the notation shown
there we have f(s) = ln s− s and its maximum is at s = 1. Since f ′′(1) = −1, we get:

n! ∼ e(n+1) lnn

√
2π

n · | − 1|
e−n = nnn

√
2π

n
e−n =

√
2πn

(n
e

)n
Therefore:

n! ∼
√

2πn
(n
e

)n
Taking the logarithm we find another famous expression for Stirling’s approximation:

lnn! ∼ n lnn− n+
1

2
ln(2πn)
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Appendix D

A more convincing foundation of
statistical mechanics

D.1 Introduction

As we have stated in 3.2.5, we would like to understand if a more rigorous foundation of sta-
tistical mechanics can be established. In particular we would like to see if the equal a priori
probability in the phase space of a system is a general property of any physical system, and if
so why does it occur.

To make things more tangible let us consider a system with Hamiltonian:

H(Q,P) =
∑
i

~pi
2

2mi
+ V (Q)

We know that from a microscopic point of view the system can be completely described if we
solve Hamilton’s equations:

~̇qi =
∂H
∂~pi

=
~pi
mi

~̇pi = −∂H
∂~qi

= −∂V
∂~qi

with given initial conditions that we call (Q0,P0), so that in the end we know (Q(t),P(t)) for
any t.
If we now call O(Q,P) a generic observable of the system we can define its time average as:

O(Q0,P0) = lim
T→∞

1

T

∫ T

0
O(Q(t),P(t))dt

We can therefore ask ourselves: is there a relation between the time average O and the ensem-
ble average 〈O〉 of the observable O? And in particular are there any hypotheses under which
these two averages are equal?
It is very important to find an answer to this question because O, as can be seen from its def-
inition, derives solely from the microscopic properties of the system while 〈O〉 comes from its
statistical description given within the microcanonical ensemble. Therefore if we can find a
relation between these two quantities we can establish a microscopic foundation of the micro-
canonical ensemble and thus of the whole statistical mechanics.

As we will see, we will be able to determine under which hypotheses O = 〈O〉 but unfortu-
nately to date it is still not known when these hypotheses do apply.
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D.2 Liouville’s theorem

The first important result that we want to prove is Liouville’s theorem; this is a very important
theorem which will be useful in the following, and ultimately justifies why we microscopically
describe systems in phase space and not in other possible spaces1. It essentially states that the
phase space volume is locally conserved, or in other words time evolution doesn’t change it.
Let’s show it explicitly.

Theorem (Liouville). Let H be the Hamiltonian of a physical system of N particles, and ρ(Q,P, t)
a generic probability density in phase space which can in general also depend explicitly on time. Let
(Q0,P0) be the initial conditions of the system and call (Q(t),P(t)) their time evolutions, namely the
solutions of Hamilton’s equations:

Q̇(t) =
∂

∂P
H(Q(t),P(t)) Ṗ(t) = − ∂

∂Q
H(Q(t),P(t))

Then ρ is constant along (Q(t),P(t)), namely:

d

dt
ρ(Q(t),P(t), t) = 0

Proof. Since ρ is a probability density it must satisfy the continuity equation2:

∂

∂t
ρ(Q(t),P(t), t) = −~∇ · ~J(Q(t),P(t), t)

where the probability flow is given by3:

~J(Q(t),P(t), t) = ρ(Q(t),P(t), t)

(
Q̇(t)

Ṗ(t)

)
The continuity equation can be rewritten as:

0 =
∂

∂t
ρ(Q(t),P(t), t) + ~∇ · ~J(Q(t),P(t), t) =

∂ρ

∂t
+

3N∑
i=1

[
∂

∂qi
(q̇iρ) +

∂

∂pi
(ṗiρ)

]
=

=
∂ρ

∂t
+

3N∑
i=1

[
∂

∂qi

(
∂H
∂pi

ρ

)
+

∂

∂pi

(
−∂H
∂qi

ρ

)]
If we now compute all the derivatives, since H is a sufficiently regular function we can use
Schwartz’s theorem to cancel all the terms with the second derivatives inH. We therefore get:

0 =
∂ρ

∂t
+

3N∑
i=1

(
q̇i
∂ρ

∂qi
+ ṗi

∂ρ

∂pi

)
1For example, if we consider a system of particles of the same mass we could have equally well described it in the

space of positions and velocities rather than with positions and momenta. In this case, in fact, a collision between
particles can be seen as an exchange of velocity between the two and since all the particles have the same mass this
is also equivalent to an exchange in momentum. However, if we consider particles of different mass this is not true
any more and the only quantity exchanged between colliding particles is momentum. Therefore, position-velocity
space does not have the same properties of phase space (in particular, Liouville’s theorem does not apply).

2This is a general property of probability distributions: in fact probability can’t just “disappear” and “reappear”
in different parts of the phase space.

3This can be better understood through an analogy with fluids: if ρ(~r, t) is the fluid density, then it must satisfy
the continuity equation ρ̇ = −~∇ · ~J where ~J = ρ~̇r.
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However, by definition of total derivative we have precisely:

dρ

dt
=
∂ρ

∂t
+

3N∑
i=1

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
So in the end:

d

dt
ρ(Q(t),P(t), t) = 0

As a consequence of Liouville’s theorem we have that the probability density in phase space of
an isolated system in equilibrium is such that:

d

dt
ρeq(Q(t),P(t)) = 0

(in fact since the system is in equilibrium its probability density doesn’t depend explicitly on
time). Therefore ρeq is a conserved quantity; we have however seen that the only conserved
quantity for an isolated system at equilibrium is its energy4 so ρeq must be some function F of
the HamiltonianH:

ρeq(Q,P) = F (H(Q,P))

In the microcanonical ensemble we have postulated that F (H) = δ(H−E)/Ω(E, V,N), but this
is just a particular case (there is nothing that urges us to suppose so).
Therefore, the a priori equal probability postulate is compatible with Liouville’s theorem but
does not necessarily derive from it.

D.3 Ergodicity

Let us note that Liouville’s theorem does not prevent the microstate of a system to be confined
in a particular region of the constant-energy phase space hypersurface, or to move “mostly” in
that region5. In this case we surely have:

O(Q,P) = lim
T→∞

1

T

∫ T

0
O(Q(t),P(t))dt 6= 〈O(Q,P)〉

Such phenomena do occur in physical systems, in particular those with few degrees of freedom.
Planetary systems are an example since the orbits of the planets are approximately stable and
thus the representative point of the system always remains in the same region of the phase
space; if it “spanned” all the accessible phase space hypersurface of constant energy then the
orbits would mess up completely and the system wouldn’t be stable.
There are also however many-particle systems whose representative point remains almost al-
ways in the same region of phase space. An example is the Fermi-Pasta-Ulam system, a chain
of N anharmonic oscillators (namely every particle of the system is subject to the potential6

U(x) = kx2 + ux4). In this case it turns out that if we give some energy to a single particle, this
energy is not distributed along all the system as one would expect if the representative point of
the system spanned the entire accessible region of phase space. However this kind of system is
a bit “pathological” since it has been shown that in the continuum limit the Fermi-Pasta-Ulam

4We are considering the system fixed and still, so that its momentum and angular momentum are zero.
5This means that the time evolution of the representative point is such that it is much more probable to find it in

determinate regions of phase space than others.
6A simple harmonic potential would be too simple: with a proper change of coordinates, in fact, the system can

be described as a set of N independent particles.
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system has an infinite number of conserved quantities, not just one (as we require).

We are interested, however, in systems where such phenomena do not occur. In particular in
order to establish a link with the microcanonical ensemble we would like to discuss systems
where the representative point “spans” the whole accessible phase space, namely it spends on
average the same time covering different regions of the constant energy hypersurface.
This property of dynamical systems is known with the name of ergodicity. Its most intuitive
definition (although not the most useful, as we will shortly see) is the following:

Definition (Ergodicity, I). A dynamical system is said to be ergodic if on the hypersurface of constant
energy the time evolution of almost every point eventually passes arbitrarily close to any other point.

The expression “almost every point” of the hypersurface means that we are considering it up to
a set of null measure. This is needed to avoid problems with strange or unusual configurations:
in this way for example we are excluding the possibility that all the particles move precisely at
the same velocity in neat rows.
As we have said this definition is not very useful, nor it is really clear since it does not follow
explicitly from it that the representative point covers different regions of phase space on aver-
age in the same time.

In order to give a much more useful definition of ergodicity we first must introduce the concept
of ergodic component of a set (which we think of as the hypersurface of constant energy):

Definition D.1 (Ergodic component). Let S be a subset of the phase space. Then a set Σ ⊂ S is called
ergodic component of S if it is invariant under time evolution, namely:

(Q(0),P(0)) ∈ Σ =⇒ (Q(t),P(t)) ∈ Σ ∀t

Intuitively, different ergodic components of a same set are subsets that are not “mixed” together
by time evolution.
Now, we can give another definition of ergodicity:

Definition D.2 (Ergodicity, II). A dynamical system is said to be ergodic if the measure of every
ergodic component Σ of the hypersurface of constant energy S is either zero or equal to the measure of S.
In other words, if µ is the measure defined on phase space then the system is ergodic if for any ergodic
component Σ of S we have µ(Σ) = 0 or µ(Σ) = µ(S).

This means that a dynamical system is ergodic if the hypersurface of constant energy S is in-
variant under time evolution up to a set of null measure.

Even if it is not immediately clear these two definitions are equivalent, but we won’t show that.
What we want to do now is to show that if a system is ergodic according to this last definition
then the time average and the microcanonical ensemble average of an observable coincide.

Theorem D.1. If a system is ergodic according to definition D.2 and O(Q,P) is an observable, then
time average and ensemble average coincide:

O(Q,P) = 〈O(Q,P)〉

Proof. First of all, let us note that:

O(Q(0),P(0)) = O(Q(t0),P(t0))

namely the time average does not depend on the initial instant we choose. In fact we have:

O(Q(0),P(0)) = lim
T→∞

1

T

∫ T

0
O(Q(t),P(t))dt =

= lim
T→∞

[
1

T

∫ t0

0
O(Q(t),P(t))dt+

1

T

∫ T

t0

O(Q(t),P(t))dt

]
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The first integral is a constant (it does not depend on T ), so in the limit T → ∞ the first term
vanishes. Therefore, multiplying and dividing by T − t0:

O(Q(0),P(0)) = lim
T→∞

T − t0
T

1

T − t0

∫ T

t0

O(Q(t),P(t))dt = O(Q(t0),P(t0))

(since limT→∞(T − t0)/T = 1).

We now define:
Ra =

{
(Q,P) : O(Q,P) ≤ a

}
a ∈ R

For what we have noted above this is an ergodic component of the hypersurface S since the
time evolution maps Ra into itself.
Therefore, either µ(Ra) = 0 or µ(Ra) = µ(S); note also that if a < a′ then Ra ⊂ Ra′ and
µ(Ra) = µ(S)⇒ µ(Ra′) = µ(S).
We now call a∗ the smallest value of a such that µ(Ra) = µ(S):

a∗ = inf {a ∈ R : µ(Ra) = µ(S)}

and we want to show that µ(Ra∗) = µ(S) and that a∗ = O(Q,P) for almost all (Q,P).

Let us therefore consider a sequence an (with of course n ∈ N) monotonically increasing and
such that limn→∞ an =∞, and call Ran = Rn. Then:

Rn ⊂ Rn+1

⋃
n

Rn = S

From theorems of measure theory this means that µ(Rn) → µ(S)−. Since Rn are ergodic com-
ponents of S, this means that:

∃n0 ∈ N : µ(Rn) = µ(S) ∀n ≥ n0

and so that there are some finite a ∈ R such that µ(Ra) = µ(S); we thus deduce that ∃a∗ <∞.
Let us now consider another sequence of ergodic components:

R′n = Ra∗+1/n

Then:
R′n ⊃ R′n+1 µ(R′n) = µ(S)

and the last equality is true because for every n there exists a∗ < a′n < a∗ + 1/n such that
µ(Ra′n) = µ(S). Again, from theorems of measure theory this means that:

µ

(⋂
n

R′n

)
= lim

n→∞
µ(R′n)

but since µ(R′n) = µ(S):

µ

(⋂
n

R′n

)
= lim

n→∞
µ(S) = µ(S)

Therefore, in order to show that µ(Ra∗) = µ(S) we must show that
⋂
nR
′
n =

⋂
a>a∗ Ra = Ra∗ .

We surely have Ra∗ ⊂ Ra for a > a∗, therefore:

Ra∗ ⊂
⋂
a>a∗

Ra
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If we now consider (Q,P) ∈
⋂
a>a∗ Ra, then:

O(Q,P) ≤ a ∀a > a∗ ⇒ O(Q,P) ≤ a∗ ⇒ (Q,P) ∈ Ra∗

This means that:
Ra∗ ⊃

⋂
a>a∗

Ra

and so:
Ra∗ =

⋂
a>a∗

Ra

We thus have found that:

µ(Ra) =

{
0 a < a∗

µ(S) a ≥ a∗

Therefore, if a > a∗ then Ra∗ ⊂ Ra and µ(Ra \Ra∗) = µ(Ra)− µ(Ra∗) = 0.
This means that O(Q,P) = a∗ everywhere but on the points (Q,P) of the sets:{

(Q,P) : O(Q,P) < a∗
}

:= R′
{

(Q,P) : O(Q,P) > a∗
}

= (S \Ra∗) \R′

However, µ(R′) = 0 (this can be shown similarly as what we have done, using the sequence of
ergodic componentsR′′n = Ra∗−1/n), and also the second set has null measure since µ(S\Ra∗) =
0.

Therefore, we now have to show that from the fact that O(Q,P) = a∗ almost everywhere it
follows that 〈O〉 = a∗.
We have7:

〈O〉 =
1

∆ · Ω(E)

∫
E≤H≤E+∆

O(Q,P)dΓ

If we call (Q(t),P(t)) the time evolution of (Q,P) so that (Q,P) = (Q(t = 0),P(t = 0)) and
Γ0 = {(Q,P) : H(Q,P) ∈ [E,E + ∆]}, then by definition we have:

〈O(t)〉 =
1

∆ · Ω(E)

∫
Γ0

O(Q(t),P(t))dΓ

Note that the integral is made over Γ0 and so we are integrating over the initial conditions (in
fact, in general Q(t) and P(t) will be functions of time and of the initial conditions, namely
Q(t) = Q̂(t;Q,P) and P(t) = P̂(t;Q,P)). Therefore, changing variables to (Q(t),P(t)):

〈O(t)〉 =
1

∆ · Ω(E)

∫
Γt

(Jac(t))−1O(Q(t),P(t))dΓt

where we have written the Jacobian of the change of coordinates in this way for convenience.
However, sinceH(Q(t),P(t)) = H(Q,P) we have that Γt = Γ0 and so:

〈O(t)〉 =
1

∆ · Ω(E)

∫
Γ0

(Jac(t))−1O(Q,P)dΓ

where we have renamed the integration variables to (Q,P).
Now:

(Jac(t))−1 = det
∂(Q,P)

∂(Q(t),P(t))
⇒ Jac(t) = det

∂(Q(t),P(t))

∂(Q,P)

7We consider a thin energy shell instead of an hypersurface because it makes things simpler.
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namely:

Jac(t) =

∣∣∣∣∣∣∣∣
∂q1(t)
∂q1

· · · ∂p3N (t)
∂q1

...
. . .

...
∂q1(t)
∂p3N

· · · ∂p3N (t)
∂p3N

∣∣∣∣∣∣∣∣
For dynamical systems, Jac(t) = 1 for all t as a consequence of Hamilton’s equations.
In fact calling for brevity (Q(t),P(t)) := x and (Q,P) := y, then:

d

dt
Jac(t) =

6N∑
i=1

Ji Ji = det
∂(x1, . . . , ẋi, . . . , x6N )

∂(y1, . . . , y6N )

and we have:

ẋi =

{
∂H
∂pi

if xi = qi

−∂H
∂qi

if xi = pi

Furthermore, in general:

∂ẋi
∂yk

=

6N∑
j=1

∂ẋi
∂xj

∂xj
∂yk

and thus:
d

dt
Jac(t) =

6N∑
i=1

6N∑
j=1

∂ẋi
∂xj

det
∂(x1, . . . , xi−1, xj , xi+1, . . . , x6N )

∂(y1, . . . , y6N )

This determinant is null if i 6= j (because the determinant of a matrix with two equal columns
vanishes), otherwise it will be equal to a constant J . Therefore:

det
∂(x1, . . . , xi−1, xj , xi+1, . . . , x6N )

∂(y1, . . . , y6N )
= Jδij

and so:

d

dt
Jac(t) = J

6N∑
i=1

∂ẋi
∂xi

= J
3N∑
i=1

(
∂q̇i
∂qi

+
∂ṗi
∂pi

)
J

3N∑
i=1

(
∂2H
∂qi∂pi

− ∂2H
∂pi∂qi

)
= 0

Therefore Jac(t) = const. = Jac(0) = 1, since for t = 0 the change of coordinates is the identity.

This means that:
〈O(t)〉 =

1

∆ · Ω(E)

∫
Γ0

O(Q,P)dΓ

namely 〈O(t)〉 doesn’t depend on time. Therefore:

〈O〉 = 〈O(t)〉 = lim
T→∞

1

T

∫ T

0
〈O(t)〉 dt =

〈
lim
T→∞

1

T

∫ T

0
O(Q(t),P(t))dt

〉
=
〈
O(Q,P)

〉
= 〈a∗〉 = a∗

This ultimately implies that 〈O〉 = O, which is what we wanted to show.

So, we now know that if a system is ergodic then the microcanonical ensemble is well defined.
But how can we know if a system is ergodic or not? Unfortunately we still don’t know: this is
to date an open problem.
We can however cite two other important systems which can be not ergodic: magnets and
glasses. A magnet (as also shown throughout chapter 5) can be considered as composed of
small orientable magnetic dipoles (the spins of the atoms); at high temperatures the system
is “disordered” and the dipoles are not aligned, but when the temperature becomes smaller
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than the so called “critical” one Tc these dipoles align along any of the possible directions in
space. The system thus spontaneously breaks its internal symmetry; such phenomena lead to
ergodicity breaking: in fact when T < Tc it can be shown that the time it takes the system to
spontaneously rearrange its magnetization along another direction grows with the dimension
of the system. This means that in the thermodynamic limit the system will always remain in the
same configurations, and so its representative point will not visit all the available regions of
phase space (note that the configuration of the system is now given by the spin configuration,
not the positions of the particles).
The same argument applies to other kinds of phase transitions that break a symmetry of a given
system, for example the solidification of a fluid.
Glasses are much more complicated systems, and many of their properties are still unknown.
Their main characteristic is that they are nor crystalline solids nor fluids, so strictly speaking
they are not at equilibrium: they tend to approach a crystalline configuration, but the process
takes insanely huge amounts of time (glass dynamics is often referred to as “sluggish dynam-
ics”).



Appendix E

Homogeneous functions

E.1 Homogeneous functions of one or more variables

Let us begin with the definition of homogeneous function.

Definition E.1 (Homogeneous function). A function f(x) is said to be homogeneous if:

f(λx) = g(λ)f(r) ∀λ ∈ R (E.1)

where g is, for now, an unspecified function (we will shortly see that it has a precise form).

An example of homogeneous function is f(x) = Ax2; in fact:

f(λx) = Aλ2x2 = λ2f(x)

and so in this case g(λ) = λ2.

A very interesting property of homogeneous functions is that once its value in a point x0 and
the function g(λ) are known, the entire f(x) can be reconstructed; in fact, any x can be written
in the form λx0 (of course with λ = x/x0), so that:

f(x) = f(λx0) = g(λ)f(x0)

We now want to show that g(λ) has a precise form.

Theorem. The function g(λ) as in definition E.1 is:

g(λ) = λp

Proof. From (E.1), for λ, µ ∈ R we have on one hand that:

f(λµx) = f(λ(µx)) = g(λ)f(µx) = g(λ)g(µ)f(x)

but also:
f((λµ)x) = g(λµ)f(x)

and so:
g(λµ) = g(λ)g(µ)

If we now suppose g to be differentiable1, then differentiating with respect to µ this last equa-
tion we get:

λg′(λµ) = g(λ)g′(µ)

1In reality it would be sufficient the sole continuity of g, but in this case the proof becomes longer.
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where by g′ we mean the derivative of g with respect to its argument. Setting µ = 1 and
defining p := g′(1) we have:

λg′(λ) = g(λ)p ⇒ g′(λ)

g(λ)
=
p

λ

which yields:

d

dλ
ln g(λ) =

p

λ
⇒ ln g(λ) = p lnλ+ c ⇒ g(λ) = ecλp

Now, g′(λ) = pecλp−1, so since g′(1) = p by definition we have p = pec and thus c = 0.
Therefore:

g(λ) = λp

A homogeneous function such that g(λ) = λp is said to be homogeneous of degree p.

In case f is a function of more than one variable x1, . . . , xn, the definition of homogeneous
function changes to:

f(λx1, . . . , λxn) = g(λ)f(x1, . . . , xn)

E.2 Generalized homogeneous functions

In case, for example, of a function of two variables x and y, the definition of homogeneous
function can be extended to:

f(λax, λby) = λf(x, y) ∀λ, a, b ∈ R

In this case f is said to be a generalized homogeneous function (of two variables).

Let us note that this is indeed the most general form for a generalized homogeneous function; in
fact if f(λax, λby) = λpf(x, y) then it is sufficient to call λp = σ to get f(σa/px, σb/py) = σf(x, y),
which is in the form of the definition we have given.

For the considerations that we make in chapter 7 it is important to note that from the definition
of homogeneous function, since λ is arbitrary we can set λ = y−1/b and get:

f(x, y) = y1/bf

(
x

ya/b
, 1

)
which transforms the dependence of f from the two variables x and y to the sole ratio x/ya/b.
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